Deep Learning and Machine Learning Techniques in Dental Disease Detection and Classification
DOI:
https://doi.org/10.32628/IJSRSET25122199Keywords:
Deep Learning, machine learning, dental disease detection, convolutional neural network, medical image, classification, artificial intelligenceAbstract
Recent deep learning (DL) and machine learning (ML) developments have notably improved dental disease detection and classification automation. These methods utilise a combination of CNNS, transfer learning, and ensemble models to interpret radiographic images, intra-oral scans, and clinical information with impressive accuracy. The application of DL and ML technologies enhances the effectiveness of diagnosis, minimises human error, and aids in diagnosing disorders, including caries, periodontal disease, and oral cancer. This paper investigates recent available methodologies with their associated performance metrics and issues in industrial applications. Regarding research, translation, and clinical deployment, some future directions are also introduced, such as multimodal data fusion and explainable AI.
Downloads
References
T. Bonny, W. A. Nassan, K. Obaideen, M. N. A. Mallahi, Y. Mohammad, and H. M. El‐Damanhoury, “Contemporary Role and Applications of Artificial Intelligence in Dentistry,” F1000Research, vol. 12, p. 1179, Sep. 2023, doi: 10.12688/f1000research.140204.1.
A. Dhopte and H. Bagde, “Smart Smile: Revolutionizing Dentistry With Artificial Intelligence,” Cureus. Cureus, Inc., Jun. 30, 2023. doi: 10.7759/cureus.41227.
S. Sarwar and S. Jabin, “AI Techniques for Cone Beam Computed Tomography in Dentistry: Trends and Practices,” arXiv (Cornell University), Jan. 2023, doi: 10.48550/arxiv.2306.03025.
A. Babu, J. Andrew, and K. M. Sagayam, “Artificial Intelligence in dentistry: Concepts, Applications and Research Challenges,” E3S Web of Conferences, vol. 297, p. 1074, Jan. 2021, doi: 10.1051/e3sconf/202129701074.
T. Shan, F. R. Tay, and L. Gu, “Application of Artificial Intelligence in Dentistry,” Journal of Dental Research, vol. 100, no. 3. SAGE Publishing, p. 232, Oct. 29, 2020. doi: 10.1177/0022034520969115.
H. Ding, J. Wu, W. Zhao, J. Matinlinna, M. F. Burrow, and K. Tsoi, “Artificial intelligence in dentistry—A review,” Frontiers in Dental Medicine, vol. 4. Frontiers Media, Feb. 20, 2023. doi: 10.3389/fdmed.2023.1085251.
S. Sharma et al., “Revolutionizing Dentistry: The Applications of Artificial Intelligence in Dental Health Care,” Journal of Pharmacy And Bioallied Sciences, vol. 16. Medknow, Mar. 05, 2024. doi: 10.4103/jpbs.jpbs_1290_23.
F. Mayta‐Tovalino, A. Munive-Degregori, S. Luza, F. C. Cárdenas-Mariño, M. E. Guerrero, and J. Barja–Ore, “Applications and perspectives of artificial intelligence, machine learning and ‘dentronics’ in dentistry: A literature review,” Journal of International Society of Preventive and Community Dentistry, vol. 13, no. 1. Medknow, p. 1, Jan. 01, 2023. doi: 10.4103/jispcd.jispcd_35_22.
F. Schwendicke, W. Samek, and J. Krois, “Artificial Intelligence in Dentistry: Chances and Challenges,” Journal of Dental Research, vol. 99, no. 7. SAGE Publishing, p. 769, Apr. 21, 2020. doi: 10.1177/0022034520915714.
N. G. Nia, E. Kaplanoğlu, and A. Nasab, “Evaluation of artificial intelligence techniques in disease diagnosis and prediction,” Discover Artificial Intelligence, vol. 3, no. 1, Jan. 2023, doi: 10.1007/s44163-023-00049-5.
F. Schwendicke and J. Krois, “Precision dentistry—what it is, where it fails (yet), and how to get there,” Clinical Oral Investigations, vol. 26, no. 4. Springer Nature, p. 3395, Mar. 14, 2022. doi: 10.1007/s00784-022-04420-1.
G. K. Thakur, A. Thakur, S. Kulkarni, N. Khan, and S. Khan, “Deep Learning Approaches for Medical Image Analysis and Diagnosis,” Cureus, May 2024, doi: 10.7759/cureus.59507.
Y. Maraş, G. Tokdemir, K. Üreten, E. Atalar, S. Duran, and H. Maraş, “Diagnosis of osteoarthritic changes, loss of cervical lordosis, and disc space narrowing on cervical radiographs with deep learning methods,” Joint Diseases and Related Surgery, vol. 33, no. 1, p. 93, Mar. 2022, doi: 10.52312/jdrs.2022.445.
M. R. Arbabshirani et al., “Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration,” npj Digital Medicine, vol. 1, no. 1, Jan. 2018, doi: 10.1038/s41746-017-0015-z.
M. Coccia, “Artificial intelligence technology in oncology: a new technological paradigm,” arXiv (Cornell University), Jan. 2019, doi: 10.48550/arxiv.1905.06871.
L. Coelho, “How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications,” Bioengineering, vol. 10, no. 12, p. 1435, Dec. 2023, doi: 10.3390/bioengineering10121435.
Chaves, E.T.; Vinayahalingam, S.; van Nistelrooij, N.; Xi, T.; Romero, V.H.D.; Flügge, T.; Saker, H.; Kim, A.; da Silveira Lima, G.; Loomans, B.; et al. Detection of caries around restorations on bitewings using deep learning. J. Dent. 2024, 104886.
Esmaeilyfard, R.; Bonyadifard, H.; Paknahad, M. Dental Caries Detection and Classification in CBCT Images Using Deep Learning. Int. Dent. J. 2024, 74, 328–334.
Dayı, B.; Üzen, H.; Çiçek, ˙ I.B.; Duman, ¸S.B. A Novel Deep Learning-Based Approach for Segmentation of Different Type Caries Lesions on Panoramic Radiographs. Diagnostics 2023, 13, 202.
Kühnisch, J.; Meyer, O.; Hesenius, M.; Hickel, R.; Gruhn, V. Caries detection on intraoral images using artificial intelligence. J. Dent. Res. 2022, 101, 158–165.
Zhang, X.; Liang, Y.; Li, W.; Liu, C.; Gu, D.; Sun, W.; Miao, L. Development and evaluation of deep learning for screening dental caries from oral photographs. Oral Dis. 2022, 28, 173–181.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.