Effects of Solvent on Achieving Reduced Pore Size and Enhanced Surface Area in Zeolitic Imidazolate Framework-8 Nanoparticles
DOI:
https://doi.org/10.32628/IJSRSET2512504Keywords:
ZIF-8, Methanol, Specific surface areaAbstract
The synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles was achieved by combining 2-methylimidazole (MIM) and zinc nitrate hexahydrate (Zn) in a methanol solution without additives at room temperature. This study investigates the impact of solvent volume on the specific surface area and structural properties of ZIF-8, while maintaining a constant molar ratio of the precursors. BET and single-point surface area assessments revealed significant variations in surface area, despite the fact that all samples exhibited consistent crystallinity and functional groups, confirmed by XRD and FT-IR analyses. Surface area and pore volume were improved as the methanol volume was increased. The sample that was synthesized using 1.2 mol of methanol exhibited the highest microporosity and network accessibility. The results indicate that the volume of the solvent is crucial in influencing nucleation and growth, which in turn impacts the porosity and structural integrity of the framework produced. It is crucial to optimise methanol concentration to effectively tailor ZIF-8 materials for high-performance applications.
📊 Article Downloads
References
Zhu, H., Zhang, Q., & Zhu, S. (2015). Preparation of raspberry-like ZIF-8/PS composite spheres via dispersion polymerization. Dalton Transactions, 44(38), 16752-16757. DOI: https://doi.org/10.1039/C5DT02627J
Mu, L., Liu, B., Liu, H., Yang, Y., Sun, C., & Chen, G. (2012). A novel method to improve the gas storage capacity of ZIF-8. Journal of Materials Chemistry, 22(24), 12246-12252. DOI: https://doi.org/10.1039/c2jm31541f
Heinz, K., Rogge, S. M., Kalytta-Mewes, A., Volkmer, D., &Bunzen, H. (2023). MOFs for long-term gas storage: exploiting kinetic trapping in ZIF-8 for on-demand and stimuli-controlled gas release. Inorganic Chemistry Frontiers, 10(16), 4763-4772. DOI: https://doi.org/10.1039/D3QI01007D
Nguyen, T. M. T., Chen, J. W., Pham, M. T., Bui, H. M., Hu, C. C., You, S. J., & Wang, Y. F. (2023). A high-performance ZIF-8 membrane for gas separation applications: Synthesis and characterization. Environmental Technology & Innovation, 31, 103169. DOI: https://doi.org/10.1016/j.eti.2023.103169
Zhu, R., Wang, L., Zhang, H., Liu, C., & Wang, Z. (2024). ZIF-8 membranes on ZIF-8-PVDF/PVDF dual-layer polymeric hollow fiber supports for gas separation. Separation and purification technology, 335, 126209. DOI: https://doi.org/10.1016/j.seppur.2023.126209
Estany-Macià, A., Navale, S., Fort-Grandas, I., Romano-Rodríguez, A., & Moreno-Sereno, M. (2023, June). ZIF-8 Based Sensors for Chemical Vapors Optical Detection. In 2023 14th Spanish Conference on Electron Devices (CDE) (pp. 1-4). IEEE. DOI: https://doi.org/10.1109/CDE58627.2023.10339450
Kim, S. J., Lee, J. M., Jo, S. G., Lee, E. B., Lee, S. K., & Lee, J. W. (2022). Recent research trend of supercapacitor and chemical sensor using composite of ZIF-8 and carbon-based material. Journal of the Korean institute of surface engineering, 55(2), 51-62. DOI: https://doi.org/10.5695/JKISE.2010.43.2.051
Tran, U. P., Le, K. K., & Phan, N. T. (2011). Expanding applications of metal− organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. Acs Catalysis, 1(2), 120-127. DOI: https://doi.org/10.1021/cs1000625
Elaouni, A., El Ouardi, M., Zbair, M., BaQais, A., Saadi, M., & Ait Ahsaine, H. (2022). ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: a review. RSC advances, 12(49), 31801-31817. DOI: https://doi.org/10.1039/D2RA05717D
Ma, R., Li, Q., Yan, J., Tao, Y., Hu, S., Liu, D., ... & Xiong, Y. (2023). Thermodynamically controllable synthesis of ZIF-8 exposing different facets and their applications in single atom catalytic oxygen reduction reactions. Nano Research, 16(7), 9618-9624. DOI: https://doi.org/10.1007/s12274-023-5655-5
Wang, Q., Sun, Y., Li, S., Zhang, P., & Yao, Q. (2020). Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC advances, 10(62), 37600-37620. DOI: https://doi.org/10.1039/D0RA07950B
Rahman, M., Kabir, M., Islam, T., Wang, Y., Meng, Q., Liu, H., ... & Wu, S. (2025). Curcumin-loaded ZIF-8 nanomaterials: exploring drug loading efficiency and biomedical performance. ACS omega, 10(3), 3067-3079. DOI: https://doi.org/10.1021/acsomega.4c09945
Kaur, H., Mohanta, G. C., Gupta, V., Kukkar, D., & Tyagi, S. (2017). Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. Journal of Drug Delivery Science and Technology, 41, 106-112. DOI: https://doi.org/10.1016/j.jddst.2017.07.004
Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., ... & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. DOI: https://doi.org/10.1073/pnas.0602439103
Ploetz, E., Engelke, H., Lächelt, U., & Wuttke, S. (2020). The chemistry of reticular framework nanoparticles: MOF, ZIF and COF materials. Advanced Functional Materials, 30(41), 1909062. DOI: https://doi.org/10.1002/adfm.201909062
Kouser, S., Hezam, A., Khadri, M. N., & Khanum, S. A. (2022). A review on zeolite imidazole frameworks: synthesis, properties and applications. Journal of Porous Materials, 29(3), 663-681. DOI: https://doi.org/10.1007/s10934-021-01184-z
Chen, B., Yang, Z., Zhu, Y., & Xia, Y. (2014). Zeolitic imidazolate framework materials: recent progress in synthesis and applications. Journal of Materials Chemistry A, 2(40), 16811-16831. DOI: https://doi.org/10.1039/C4TA02984D
Zheng, Z., Rong, Z., Nguyen, H. L., & Yaghi, O. M. (2023). Structural chemistry of zeolitic imidazolate frameworks. Inorganic Chemistry, 62(51), 20861-20873. DOI: https://doi.org/10.1021/acs.inorgchem.3c02322
Zhang, Y., Jia, Y., & Hou, L. A. (2018). Synthesis of zeolitic imidazolate framework-8 on polyester fiber for PM 2.5 removal. RSC advances, 8(55), 31471-31477. DOI: https://doi.org/10.1039/C8RA06414H
Kida, K., Okita, M., Fujita, K., Tanaka, S., & Miyake, Y. (2013). Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 15(9), 1794-1801. DOI: https://doi.org/10.1039/c2ce26847g
Chakraborty, A., Islam, D. A., & Acharya, H. (2019). Facile synthesis of CuO nanoparticles deposited zeolitic imidazolate frameworks (ZIF-8) for efficient photocatalytic dye degradation. Journal of Solid State Chemistry, 269, 566-574. DOI: https://doi.org/10.1016/j.jssc.2018.10.036
Zhang, H., Shi, Q., Kang, X., & Dong, J. (2013). Vapor-assisted conversion synthesis of prototypical zeolitic imidazolate framework-8. Journal of Coordination Chemistry, 66(12), 2079-2090. DOI: https://doi.org/10.1080/00958972.2013.797966
Beldon, P. J., Fábián, L., Stein, R. S., Thirumurugan, A., Cheetham, A. K., & Friščić, T. (2010). Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angewandte Chemie-International Edition, 49(50), 9640-9643. DOI: https://doi.org/10.1002/anie.201005547
Hillman, F., Zimmerman, J. M., Paek, S. M., Hamid, M. R., Lim, W. T., & Jeong, H. K. (2017). Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers. Journal of Materials Chemistry A, 5(13), 6090-6099. DOI: https://doi.org/10.1039/C6TA11170J
Cho, H. Y., Kim, J., Kim, S. N., & Ahn, W. S. (2013). High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous and Mesoporous Materials, 169, 180-184. DOI: https://doi.org/10.1016/j.micromeso.2012.11.012
Martinez Joaristi, A., Juan-Alcañiz, J., Serra-Crespo, P., Kapteijn, F., & Gascon, J. (2012). Electrochemical synthesis of some archetypical Zn2+, Cu2+ and Al3+ metal organic frameworks. Crystal Growth & Design, 12(7), 3489-3498. DOI: https://doi.org/10.1021/cg300552w
Sun, W., Zhai, X., & Zhao, L. (2016). Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chemical Engineering Journal, 289, 59-64. DOI: https://doi.org/10.1016/j.cej.2015.12.076
Du, Y., Chen, R. Z., Yao, J. F., & Wang, H. T. (2013). Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity. Journal of Alloys and Compounds, 551, 125-130. DOI: https://doi.org/10.1016/j.jallcom.2012.10.045
Zheng, G., Chen, Z., Sentosun, K., Pérez-Juste, I., Bals, S., Liz-Marzán, L. M., ... & Hong, M. (2017). Shape control in ZIF-8 nanocrystals and metal nanoparticles@ ZIF-8 heterostructures. Nanoscale, 9(43), 16645-16651. DOI: https://doi.org/10.1039/C7NR03739B
Schejn, A., Balan, L., Falk, V., Aranda, L., Medjahdi, G., & Schneider, R. (2014). Controlling ZIF-8 nano-and microcrystal formation and reactivity through zinc salt variations. CrystEngComm, 16(21), 4493-4500. DOI: https://doi.org/10.1039/C3CE42485E
García-Palacín, M., Martinez, J. I., Paseta, L., Deacon, A., Johnson, T., Malankowska, M., ... & Coronas, J. (2020). Sized-controlled ZIF-8 nanoparticle synthesis from recycled mother liquors: environmental impact assessment. ACS Sustainable Chemistry & Engineering, 8(7), 2973-2980. DOI: https://doi.org/10.1021/acssuschemeng.9b07593
Jian, M., Liu, B., Liu, R., Qu, J., Wang, H., & Zhang, X. (2015). Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. Rsc Advances, 5(60), 48433-48441. DOI: https://doi.org/10.1039/C5RA04033G
Zhang, Y., Jia, Y., Li, M., & Hou, L. A. (2018). Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific reports, 8(1), 9597. DOI: https://doi.org/10.1038/s41598-018-28015-7
Yang, X., Qiu, L., & Luo, X. (2018). ZIF-8 derived Ag-doped ZnO photocatalyst with enhanced photocatalytic activity. RSC advances, 8(9), 4890-4894. DOI: https://doi.org/10.1039/C7RA13351K
Kaid, M. M., Elbanna, O., El-Hakam, S. A., El-Kaderi, H. M., & Ibrahim, A. A. (2022). Effective photocatalytic degradation of organic dyes using ZNC/rGO nanocomposite photocatalyst derived from ZIF-8/rGO thermolysis for water treatment. Journal of Photochemistry and Photobiology A: Chemistry, 430, 114001. DOI: https://doi.org/10.1016/j.jphotochem.2022.114001
Pan, Y., Liu, Y., Zeng, G., Zhao, L., & Lai, Z. (2011). Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 47(7), 2071-2073. DOI: https://doi.org/10.1039/c0cc05002d
Li, J., Chang, H., Li, Y., Li, Q., Shen, K., Yi, H., & Zhang, J. (2020). Synthesis and adsorption performance of La@ ZIF-8 composite metal–organic frameworks. Rsc Advances, 10(6), 3380-3390. DOI: https://doi.org/10.1039/C9RA10548D
Jomekian, A., Behbahani, R. M., Mohammadi, T., &Kargari, A. (2016). Innovative layer by layer and continuous growth methods for synthesis of ZIF-8 membrane on porous polymeric support using poly (ether-block-amide) as structure directing agent for gas separation. Microporous and Mesoporous Materials, 234, 43-54. DOI: https://doi.org/10.1016/j.micromeso.2016.07.008
Hu, Y., Kazemian, H., Rohani, S., Huang, Y., & Song, Y. (2011). In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chemical communications, 47(47), 12694-12696. DOI: https://doi.org/10.1039/c1cc15525c
dos Santos Ferreira da Silva, J., López Malo, D., AnceskiBataglion, G., Nogueira Eberlin, M., Machado Ronconi, C., Alves Júnior, S., & de Sá, G. F. (2015). Adsorption in a fixed-bed column and stability of the antibiotic oxytetracycline supported on Zn (II)-[2-methylimidazolate] frameworks in aqueous media. PLoS One, 10(6), e0128436. DOI: https://doi.org/10.1371/journal.pone.0128436
Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57(4), 603-619. DOI: https://doi.org/10.1351/pac198557040603
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.