Emerging Threat: A Comprehensive Review of Crimean-Congo Haemorrhagic Fever Virus and Its Tick-Borne Transmission

Authors

  • Dr. Rajashree B. Patwardhan Department of Microbiology, H.V. Desai College, Maharashtra, India Author
  • Shikha R. Kumari Department of Microbiology, H.V. Desai College, Maharashtra, India Author
  • Malay Katariya Department of Microbiology, H.V. Desai College, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRSET2512166

Keywords:

CCHF, Case report, Molecular, Diagnostic assay, RDT, Sample

Abstract

India has emerged as a hotspot for emerging viral diseases, including the Crimean-Congo Hemorrhagic Fever Virus (CCHFV), which poses significant threats to public health and economic stability. Globalization, environmental changes, and increasing human-animal interactions have facilitated the transmission of zoonotic pathogens such as CCHFV, primarily transmitted through Hyalomma ticks and infected animal blood. CCHF is classified as a Biosafety Level-4 pathogen with outbreaks reported in over 30 countries. Its tripartite RNA genome comprises small (S), medium (M), and large (L) segments, encoding nucleoproteins, glycoproteins, and RNA polymerase, respectively. Clinical progression includes incubation, pre-hemorrhagic, hemorrhagic, and convalescent phases, with high mortality rates due to multiorgan failure and coagulopathies. Coinfections with diseases like malaria and dengue further complicate diagnosis and management. Current diagnostic methods include RT-PCR, ELISA, viral culture, and serological assays, though these require advanced infrastructure. The lack of approved vaccines or antiviral treatments intensifies the urgency for early detection and intervention. Rapid Diagnostic Tests (RDTs), though promising for field deployment, remain underdeveloped for CCHF. Diagnostic challenges are exacerbated by the virus’s similarity to other febrile illnesses, posing a risk of misdiagnosis. Effective containment requires enhanced biosafety measures, robust surveillance of animal reservoirs, and development of point-of-care diagnostics. Global cooperation, particularly through WHO-led initiatives, is vital to address this biosecurity concern. Comprehensive surveillance, increased diagnostic accessibility, and targeted public health strategies are essential to curb the spread of CCHFV and mitigate its potential use as a bioterrorism agent.

Downloads

Download data is not yet available.

References

Abu, N., Mohd Bakhori, N., & Shueb, R. H. (2023). Lateral Flow Assay for Hepatitis B Detection: A Review of Current and New Assays. Micromachines, 14(6), 1239. https://doi.org/10.3390/mi14061239

AFGHANISTAN. (2023). AFGHANISTAN | INFECTIOUS DISEASE OUTBREAKS SITUATION REPORT | Epidemiological week #39. In AFGHANISTAN. https://www.emro.who.int/images/stories/afghanistan/Outbreak-Situation-Report-Week-24-30-september-2023.pdf?ua=1

Atkinson, B., Chamberlain, J., Logue, C. H., Cook, N., Bruce, C., Dowall, S. D., & Hewson, R. (2012). Development of a Real-Time RT-PCR assay for the detection of Crimean-Congo Hemorrhagic Fever Virus. Vector-Borne and Zoonotic Diseases, 12(9), 786–793. https://doi.org/10.1089/vbz.2011.0770

Atwan, Z., Alhilfi, R., Mousa, A. K., Rawaf, S., Torre, J. D., Hashim, A. R., Sharquie, I. K., Khaleel, H., & Tabche, C. (2023). Alarming update on incidence of Crimean-Congo hemorrhagic fever in Iraq in 2023. IJID Regions, 10, 75–79. https://doi.org/10.1016/j.ijregi.2023.11.018

Barnwal, B., Karlberg, H., Mirazimi, A., & Tan, Y. (2016). The non-structural protein of Crimean-Congo hemorrhagic fever virus disrupts the mitochondrial membrane potential and induces apoptosis. Journal of Biological Chemistry/the Journal of Biological Chemistry, 291(2), 582–592. https://doi.org/10.1074/jbc.m115.667436

Bartolini, B., Gruber, C. E., Koopmans, M., Avšič, T., Bino, S., Christova, I., Grunow, R., Hewson, R., Korukluoglu, G., Lemos, C. M., Mirazimi, A., Papa, A., Sanchez-Seco, M. P., Sauer, A. V., Zeller, H., Nisii, C., Capobianchi, M. R., Ippolito, G., Reusken, C. B., & Di Caro, A. (2019). Laboratory management of Crimean-Congo haemorrhagic fever virus infections: perspectives from two European networks. Euro Surveillance/Eurosurveillance, 24(5). https://doi.org/10.2807/1560-7917.es.2019.24.5.1800093

Bente, D. A., Forrester, N. L., Watts, D. M., McAuley, A. J., Whitehouse, C. A., & Bray, M. (2013). Crimean-Congo hemorrhagic fever: History, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Research, 100(1), 159–189. https://doi.org/10.1016/j.antiviral.2013.07.006

Burt, F. J., & Goedhals, D. (2023). Crimean-Congo Hemorrhagic fever virus, an emerging and re-emerging pathogen of public health concern. In Springer eBooks (pp. 1–27). https://doi.org/10.1007/978-3-030-85877-3_39-1

Crimean-Congo Hemorrhagic Fever Virus for Clinicians—Diagnosis, Clinical Management, and Therapeutics - Volume 30, Number 5—May 2024 - Emerging Infectious Diseases journal - CDC. (n.d.). https://wwwnc.cdc.gov/eid/syn/en/article/30/5/23-1648.htm

Dai, S., Min, Y., Li, Q., Feng, K., Jiang, Z., Wang, Z., Zhang, C., Ren, F., Fang, Y., Zhang, J., Zhu, Q., Wang, M., Wang, H., Deng, F., & Ning, Y. (2023). Interactome profiling of Crimean-Congo hemorrhagic fever virus glycoproteins. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-43206-1

Dowall, S., Carroll, M. W., & Hewson, R. (2017). Development of vaccines against Crimean-Congo haemorrhagic fever virus. Vaccine, 35(44), 6015–6023. https://doi.org/10.1016/j.vaccine.2017.05.031

Duh, D., Saksida, A., Petrovec, M., Ahmeti, S., Dedushaj, I., Panning, M., Drosten, C., & Avšič-Županc, T. (2007). Viral load as predictor of Crimean-Congo hemorrhagic fever outcome. Emerging Infectious Diseases, 13(11), 1769–1772. https://doi.org/10.3201/eid1311.070222

Factsheet about Crimean-Congo haemorrhagic fever. (2022, April 21). European Centre for Disease Prevention and Control. https://www.ecdc.europa.eu/en/crimean-congo-haemorrhagic-fever/facts/factsheet

Feagins, A. R., Ronveaux, O., Taha, M., Caugant, D. A., Smith, V., Fernandez, K., Glennie, L., Fox, L. M., & Wang, X. (2020). Next generation rapid diagnostic tests for meningitis diagnosis. Journal of Infection, 81(5), 712–718. https://doi.org/10.1016/j.jinf.2020.08.049

Frank, M. G., Weaver, G., & Raabe, V. (2024). Crimean-Congo Hemorrhagic Fever Virus for Clinicians—Diagnosis, Clinical Management, and Therapeutics. Emerging Infectious Diseases, 30(5). https://doi.org/10.3201/eid3005.231648

Garrison, A. R., Radoshitzky, S. R., Kota, K. P., Pegoraro, G., Ruthel, G., Kuhn, J. H., Altamura, L. A., Kwilas, S. A., Bavari, S., Haucke, V., & Schmaljohn, C. S. (2013). Crimean–Congo hemorrhagic fever virus utilizes a clathrin- and early endosome-dependent entry pathway. Virology, 444(1–2), 45–54. https://doi.org/10.1016/j.virol.2013.05.030

Hawman, D. W., & Feldmann, H. (2023). Crimean–Congo haemorrhagic fever virus. Nature Reviews. Microbiology, 21(7), 463–477. https://doi.org/10.1038/s41579-023-00871-9

Honig, J. E., Osborne, J., & Nichol, S. T. (2004). Crimean–Congo hemorrhagic fever virus genome L RNA segment and encoded protein. Virology, 321(1), 29–35. https://doi.org/10.1016/j.virol.2003.09.042

Hussein, S., Qurbani, K., & Ahmed, S. K. (2023). Potential increase in Crimean-Congo hemorrhagic fever incidence in Iraq Post Eid-al-Adha, 2023. New Microbes and New Infections, 54, 101175. https://doi.org/10.1016/j.nmni.2023.101175

Ince, B., & Sezgintürk, M. K. (2022). Lateral flow assays for viruses diagnosis: Up-to-date technology and future prospects. Trends in analytical chemistry : TRAC, 157, 116725. https://doi.org/10.1016/j.trac.2022.116725

Koczula, K. M., & Gallotta, A. (2016). Lateral flow assays. Essays in biochemistry, 60(1), 111–120. https://doi.org/10.1042/EBC20150012

Masood, I., Tahir, M. J., Naeem, A., Shrateh, O. N., & Ahmed, A. (2023). The new wave of Congo virus in Pakistan: emerging threat. Tropical medicine and health, 51(1), 62. https://doi.org/10.1186/s41182-023-00559-z

Mirica, A., Stan, D., Chelcea, I., Mihailescu, C. M., Ofiteru, A., & Bocancia-Mateescu, L. (2022). Latest Trends in Lateral Flow Immunoassay (LFIA) Detection labels and conjugation process. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.922772

Muzammil, K., Rayyani, S., Sahib, A. A., Gholizadeh, O., Sameer, H. N., Kazem, T. J., Mohammed, H. B., Kalajahi, H. G., Zainul, R., & Yasamineh, S. (2024). Recent Advances in Crimean-Congo Hemorrhagic fever Virus detection, treatment, and vaccination: Overview of current status and challenges. Biological Procedures Online, 26(1). https://doi.org/10.1186/s12575-024-00244-3

Özdarendeli, A. (2023). Crimean–Congo Hemorrhagic fever virus: Progress in vaccine development. Diagnostics, 13(16), 2708. https://doi.org/10.3390/diagnostics13162708

Patel, A., Dalal, Y. D., Parikh, A. O., Gandhi, R., & Shah, A. (2023). Crimean-Congo Hemorrhagic fever: an emerging viral infection in India, revisited and lessons learned. Curēus. https://doi.org/10.7759/cureus.43315

Raabe, V. N. (2020). Diagnostic testing for Crimean-Congo hemorrhagic fever. Journal of Clinical Microbiology, 58(4). https://doi.org/10.1128/jcm.01580-19

Sahay, R. R., Shete, A. M., Yadav, P. D., Patil, S., Majumdar, T., Jain, R., Nyayanit, D. A., Kaushal, H., Panjwani, S. J., Upadhyay, K. J., Varevadiya, C. L., Vora, A., Kanani, A., & Gangakhedkar, R. R. (2021). Sequential determination of viral load, humoral responses and phylogenetic analysis in fatal and non-fatal cases of Crimean-Congo hemorrhagic fever patients from Gujarat, India, 2019. PLoS Neglected Tropical Diseases, 15(8), e0009718. https://doi.org/10.1371/journal.pntd.0009718

Schulz, A. (2020). Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) : surveillance studies among different livestock in sub-Saharan Africa and the molecular characterization of Hyalomma ticks serving as main reservoir and vector. https://elib.tiho-hannover.de/receive/tiho_mods_00001718

Shahhosseini, N., Wong, G., Babuadze, G., Camp, J. V., Ergonul, O., Kobinger, G. P., Chinikar, S., & Nowotny, N. (2021). Crimean-Congo Hemorrhagic fever virus in Asia, Africa and Europe. Microorganisms, 9(9), 1907. https://doi.org/10.3390/microorganisms9091907

Shahjahan, T., Javed, B., Sharma, V., & Tian, F. (2023). Overview of various components of Lateral-Flow immunochromatography assay for the monitoring of aflatoxin and limit of detection in food products: a Systematic review. Chemosensors, 11(10), 520. https://doi.org/10.3390/chemosensors11100520

Sharifi-Mood, B., Metanat, M., Rakhshani, F., & Shakeri, A. (2011). Co-infection of malaria and Crimean-Congo hemorrhagic fever. PubMed. https://pubmed.ncbi.nlm.nih.gov/22347306

Shtanko, O., Nikitina, R. A., Altuntas, C. Z., Чепурнов, А. А., & Davey, R. A. (2014). Crimean-Congo Hemorrhagic Fever Virus Entry into Host Cells Occurs through the Multivesicular Body and Requires ESCRT Regulators. PLOS Pathogens, 10(9), e1004390. https://doi.org/10.1371/journal.ppat.1004390

Spengler, J. R., Bergeron, É., & Rollin, P. E. (2016). Sero epidemiological studies of Crimean-Congo hemorrhagic fever virus in domestic and wild animals. PLoS Neglected Tropical Diseases, 10(1), e0004210. https://doi.org/10.1371/journal.pntd.0004210

Tezer, H., Sucaklı, İ. A., Şaylı, T. R., Çelikel, E., Yakut, H. İ., Kara, A., Tunç, B., & Ergönül, Ö. (2010). Crimean-Congo hemorrhagic fever in children. Journal of Clinical Virology, 48(3), 184–186. https://doi.org/10.1016/j.jcv.2010.04.001

Thompson, C. R., Bozkurt, I., Cosgun, Y., Blundell, P., Duvoix, A., Johnson, M., Hedef, H., Arslan, F. G., Umudum, B. A., Bilek, H. C., Tanyel, E., Pektaş, A. N., Taşseten, T. N., Bakir, M., Büyüktuna, S. A., Olçar, Y., Yilmaz, F. A., Arslan, M., Al-Hilfi, R. A., . . . Adams, E. (2024). Development and evaluation of an antigen targeting lateral flow test for Crimean-Congo Haemorrhagic Fever. EBioMedicine, 110, 105460. https://doi.org/10.1016/j.ebiom.2024.105460

Vainionpää, R., & Leinikki, P. (2008). Diagnostic techniques: serological and molecular approaches. In Elsevier eBooks (pp. 29–37). https://doi.org/10.1016/b978-012374410-4.00585-9

Wang, Q., Wang, S., Shi, Z., Li, Z., Zhao, Y., Feng, N., Wang, T., Yan, F., & Xia, X. (2024). Establishment of two serological methods for detecting IgG and neutralizing antibodies against Crimean-Congo hemorrhagic fever virus glycoprotein. Frontiers in Cellular and Infection Microbiology, 14. https://doi.org/10.3389/fcimb.2024.1341332

Weidmann, M., Avšič‐Županc, T., Bino, S., Bouloy, M., Burt, F. J., Chinikar, S., Christova, I., Dedushaj, I., Hussein, H. A., Elaldı, N., Hewson, R., Hufert, F. T., Humolli, I., Van Vuren, P. J., Tufan, Z. K., Korukluoğlu, G., Lyssen, P., Mirazimi, A., Neyts, J., . . . Zeller, H. (2016). Biosafety standards for working with Crimean-Congo hemorrhagic fever virus. Journal of General Virology, 97(11), 2799–2808. https://doi.org/10.1099/jgv.0.000610

WHO. (n.d.). WHO R&D Blueprint: Priority Diagnostics for CCHF - Use scenarios and target product profiles. In DRAFT High Priority Diagnostics for CCHF: Use Scenarios and TPPs v1.0 FOR PUBLIC CONSULTATION (pp. 1–14). https://www.who.int/docs/default-source/blue-print/call-for-comments/who-cchf-tpp-dx-draft-v1-0.pdf?sfvrsn=a5b8580_2

WHO. (n.d.-b). WHO R&D Blueprint: Priority Diagnostics for CCHF - Use scenarios and target product profiles. In DRAFT High Priority Diagnostics for CCHF: Use Scenarios and TPPs v1.0 FOR PUBLIC CONSULTATION (pp. 1–14). https://www.who.int/docs/default-source/blue-print/call-for-comments/who-cchf-tpp-dx-draft-v1-0.pdf?sfvrsn=a5b8580_2

World Health Organization: WHO. (2022, May 23). Crimean-Congo haemorrhagic fever. https://www.who.int/news-room/fact-sheets/detail/crimean-congo-haemorrhagic-fever

Xu, Z., Du, W., Wang, S., Wang, M., Yang, Y., Li, Y., Li, Z., Zhao, L., Yang, Y., Luo, W., & Wang, Y. (2024). LDLR is an entry receptor for Crimean-Congo hemorrhagic fever virus. Cell Research/Cell Research, 34(2), 140–150. https://doi.org/10.1038/s41422-023-00917-w

Yadav, P. D., Patil, D. Y., Shete, A. M., Kokate, P., Goyal, P., Jadhav, S., Sinha, S., Zawar, D., Sharma, S. K., Kapil, A., Sharma, D., Upadhyay, K. J., & Mourya, D. T. (2016). Nosocomial infection of CCHF among health care workers in Rajasthan, India. BMC Infectious Diseases, 16(1). https://doi.org/10.1186/s12879-016-1971-7

Zé-zé, L., Nunes, C., Sousa, M., De Sousa, R., Gomes, C., Santos, A. S., Alexandre, R. T., Amaro, F., Loza, T., Blanco, M., & Alves, M. J. (2024). Fatal case of Crimean-Congo hemorrhagic fever, Portugal, 2024. Emerging Infectious Diseases, 31(1). https://doi.org/10.3201/eid3101.241264

Zivcec, M., Scholte, F. E. M., Spiropoulou, C. F., Spengler, J. R., & Bergeron, É. (2016). Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus. Viruses, 8(4), 106. https://doi.org/10.3390/v8040106

Mishra, B., & Appannanavar, S. (2011). An update on crimean congo hemorrhagic fever. Journal of Global Infectious Diseases, 3(3), 285. https://doi.org/10.4103/0974-777x.83537

Downloads

Published

09-06-2025

Issue

Section

Research Articles

How to Cite

[1]
Dr. Rajashree B. Patwardhan, Shikha R. Kumari, and Malay Katariya, “Emerging Threat: A Comprehensive Review of Crimean-Congo Haemorrhagic Fever Virus and Its Tick-Borne Transmission”, Int J Sci Res Sci Eng Technol, vol. 12, no. 3, pp. 1127–1140, Jun. 2025, doi: 10.32628/IJSRSET2512166.

Similar Articles

1-10 of 88

You may also start an advanced similarity search for this article.