

Copyright © 2025 The Author(s): This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN - 2395-1990

Online ISSN : 2394-4099
Available Online at :www.ijsrset.com

doi : https://doi.org/10.32628/IJSRSET251296

717

Development of an AI-Powered Voice Assistant: Enhancing Speech

Recognition and User Interaction
Ms Shivani Gupta1, Mohd Haider2, Md Shabbir2

1Assistant Professor, Department of Computer Science, Lingaya’s Vidyapeeth Faridabad, India
2Department of Computer Science Lingaya’s Vidyapeeth Faridabad, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted : 28 May 2025

Published: 01 June 2025

 Artificial Intelligence (AI) and Natural Language Processing (NLP) have

significantly transformed human- computer interaction, enabling

intelligent systems to process voice commands efficiently. Voice assistants,

such as Google Assistant, Amazon Alexa, and Apple Siri, have set industry

benchmarks, but they still face challenges in real-time response accuracy,

handling ambient noise, and offline functionality. This paper presents the

development of a custom AI -powered voice assistant, focusing on

improving listening abilities, noise filtration, and command execution

efficiency.

The proposed system integrates Google Speech Recognition API for real-

time speech-to-text conversion, pyttsx3 for text-to- speech synthesis, and

natural language processing techniques to interpret and execute

commands. Unlike cloud-dependent voice assistants, this system provides

offline capabilities for essential commands, ensuring flexibility and

usability even in low- connectivity environments.

Experimental results demonstrate that the assistant achieves over 91%

speech recognition accuracy in controlled environments, with an average

command execution time of less than one second. Future enhancements

include deep learning- based NLP models, real-time wake-word detection,

and a graphical user interface for better interaction. The proposed system

serves as a foundation for customizable, intelligent, and efficient AI-

powered voice assistants.

Keywords—Artificial Intelligence, Voice Assistant, Speech Recognition,

Natural Language Processing, Text-to-Speech, Human-Computer

Interaction, Offline Voice Assistant.

Publication Issue :

Volume 12, Issue 3

May-June-2025

Page Number :

717-727

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Shivani Gupta et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 717-727

718

INTRODUCTION

A. Background

In the past decade, the advancement of Artificial

Intelligence (AI) and Natural Language Processing

(NLP) has significantly influenced the way humans

interact with computers. Voice assistants have

emerged as a key innovation, providing hands-free

operation and increasing efficiency in both personal

and professional settings. Assistants like Google

Assistant, Siri, and Amazon Alexa have set industry

standards by offering speech-to-text conversion,

natural language understanding, and command

execution.

Despite their widespread adoption, most

commercially available voice assistants rely heavily

on cloud-based processing, requiring an active

internet connection to function effectively. This

dependency poses several limitations, such as latency

in response time, privacy concerns regarding data

storage, and limited offline capabilities. Additionally,

accent variations, background noise, and contextual

understanding remain major challenges in achieving

human-like interaction.

This research focuses on developing a custom AI-

powered voice assistant that enhances speech

recognition, improves responsiveness, and enables

offline functionality for essential commands. The

assistant is designed to work efficiently in low-

connectivity environments, providing fast and

reliable responses while ensuring user privacy.

B. Problem Statement

While commercial voice assistants have advanced

significantly, they still exhibit several limitations that

affect their usability, including:

• Inability to function effectively offline: Most

assistants depend on cloud services, making

them unusable without an internet connection.

• Low accuracy in noisy environments: The

presence of background noise significantly

reduces the accuracy of speech recognition, often

resulting in incorrect interpretation of user

commands.

• Limited flexibility for customization: Users often

require domain-specific functionalities, which

commercial voice assistants fail to offer.

• Latency issues in command execution: Cloud

processing introduces delays in response time,

reducing efficiency.

The need for an efficient, customizable, and privacy-

focused voice assistant drives the motivation behind

this research. Our proposed solution aims to address

these challenges by integrating advanced speech

recognition, noise filtration, and offline execution

capabilities.

C. Research Objectives

The primary goal of this study is to develop and

evaluate an AI-powered voice assistant with improved

speech recognition, noise handling, and execution

efficiency. The specific objectives are:

1. To develop an accurate speech recognition system

using Google Speech API with noise filtering.

2. To implement an offline text-to-speech (TTS)

module for independent functionality without an

internet connection.

3. To optimize command processing speed for faster

response times.

4. To provide a customizable framework where users

can add new commands easily.

5. To analyze and compare the proposed system

with existing voice assistants in terms of accuracy,

speed, and offline capability.

D. Structure of the Paper

In the subsequent sections, we delve into each

component of the study in detail::

• Section 2 provides a comprehensive Literature

Review, analyzing existing voice assistant

technologies and their limitations.

• Section 3 describes the Methodology, including

the system architecture, technology stack, and

algorithmic approach.

• Section 4 details the Implementation of various

components, such as speech recognition, text-to-

speech conversion, and command processing.

• Section 5 presents the Results and Evaluation,

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Shivani Gupta et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 717-727

719

comparing performance metrics with existing

voice assistants.

• Section 6 discusses the strengths, limitations, and

potential improvements.

• Section 7 outlines Future Work, highlighting

possible enhancements and integration of deep

learning models.

• Section 8 concludes the paper with key findings

and contributions.

LITERATURE REVIEW

A. Evolution of Voice Assistants

The concept of voice-based interaction has evolved

significantly since the early 1960s, beginning with

IBM's Shoebox—an early speech recognition system

capable of processing limited numerical input.

Decades of progress in Artificial Intelligence (AI),

Machine Learning (ML), and Natural Language

Processing (NLP) have paved the way for advanced

virtual assistants. Prominent voice assistants such as

Apple’s Siri (introduced in 2011), Amazon Alexa

(2014), Microsoft Cortana (2015), and Google

Assistant (2016) demonstrate diverse functionalities,

each reflecting the evolution of underlying speech

and AI technologies.

These modern voice assistants integrate speech

recognition, deep learning-based NLP, and cloud

computing to process user commands in real time.

However, most of these systems depend on internet-

based services, limiting their usability in offline

environments. Research reveals that ambient noise

can significantly impair the accuracy of voice

recognition—by as much as 20–30%—underscoring

the need for robust noise suppression techniques in

virtual assistant systems.

B. Existing Voice Assistants and Their Limitations

Table 1 provides an overview of leading voice

assistants, highlighting their core features and

current limitations.

TABLE I. POPULAR VOICE ASSISTANTS

Voice

Assistant

Key Features Limitations

Google

Assistant

Cloud-based NLP,

multilingual support,

real-time query

resolution

Internet dependency,

privacy concerns

Amazon

Alexa

Smart home

integration, cloud AI,

voice commerce

Requires Echo

devices, internet-

dependent

Apple Siri Deep integration

with Apple

ecosystem, secure

processing

Limited offline

capabilities, iOS-

exclusive

Microsoft

Cortana

Enterprise-focuse d,

Office 365

integration

Discontinud for

general consumers

Mycroft AI Open-source voice

assistant, offline

capabilities

Limited NLP

accuracy compared

to commercial

products

From the comparison, it is evident that most modern

assistants rely on cloud-based processing, restricting

offline usability and increasing privacy concerns.

Additionally, their ability to handle custom

commands is limited, making them unsuitable for

domain-specific applications such as healthcare,

education, or industrial automation.

C. Advances in Speech Recognition and NLP

Modern voice assistants use Automatic Speech

Recognition (ASR) to convert spoken language into

text. Popular ASR models include:

● Google’s Speech-to-Text API – Provides real-time

transcription but requires internet connectivity.

● CMU Sphinx – An open-source offline ASR model

but with lower accuracy.

● DeepSpeech (by Mozilla) – A deep learning-based

model offering high accuracy but requires

significant computational power.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Shivani Gupta et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 717-727

720

Similarly, Natural Language Processing (NLP) is used

for intent recognition, sentiment analysis, and

contextual understanding. Traditional NLP models

like Bag-of-Words (BoW) and TF-IDF have been

replaced by advanced Transformer-based models (e.g.,

BERT, GPT, and T5), which offer better contextual

awareness. However, deep learning-based models

require high computational resources, making them

impractical for lightweight AI assistants.

D. Gap Analysis and Research Contribution

Based on the analysis of existing voice assistants and

speech recognition models, the major gaps identified

are:

1. Dependency on internet connectivity – Most

systems require cloud services for processing,

making them unreliable in low-connectivity

environments.

2. Limited offline capabilities – Few assistants offer

offline command execution, and those that do

(e.g., Mycroft AI) suffer from low NLP accuracy.

3. High latency in response time – Processing in

cloud environments introduces delays,

impacting user experience.

4. Privacy concerns – Cloud-based processing

stores user data, raising security and privacy

risks.

5. Limited customization – Most commercial

assistants do not allow users to add or modify

commands easily.

To address these gaps, our research proposes an AI-

powered voice assistant with enhanced offline

capabilities, real- time speech recognition, and

customizable command execution. Unlike existing

assistants, this system focuses on fast local processing,

better noise filtering, and a lightweight NLP model

for quick response generation.

METHODOLOGY

A. System Architecture

The proposed AI-powered voice assistant follows a

modular architecture to ensure flexibility, efficiency,

and scalability. The system comprises five key

components:

1. Speech Recognition Module (SRM) – Converts

voice input into text using Google Speech

Recognition API and offline ASR models.

2. Natural Language Processing Module (NLPM) –

Analyzes and interprets user queries using rule-

based NLP and machine learning techniques.

3. Command Execution Module (CEM) – Matches

recognized text with predefined commands and

executes the corresponding action.

4. Text-to-Speech (TTS) Engine – Responsible for

transforming the assistant’s text-based responses

into audible speech for user interaction. It

leverages the pyttsx3 library for offline speech

synthesis, ensuring functionality without an

internet connection.

5. User Interface (UI) Module – Provides both a

Graphical User Interface (GUI) and a command-

line interface (CLI) for interaction.

B. Technology Stack

The assistant is developed using Python due to its

strong ecosystem of AI and NLP libraries. The primary

technologies used are:

● Speech Recognition: Google Speech-to-Text API,

CMU Sphinx (for offline support)

● Natural Language Processing: NLTK, spaCy,

regex-based command matching

● Text-to-Speech (TTS): pyttsx3 (offline), gTTS

(optional online support)

● Command Execution: Python subprocess and OS

modules for system commands

● GUI Development: Tkinter for a simple interface,

expandable to PyQt

C. System Workflow

The system follows a five-step workflow:

1. Voice Input Processing: The user speaks into the

microphone, and the Speech Recognition Module

(SRM) processes the input.

2. Speech-to-Text Conversion: The system

transcribes the audio input into text using Google

Speech API or an offline ASR model.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Shivani Gupta et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 717-727

721

3. Command Understanding and Execution: The

Natural Language Processing Module (NLPM)

interprets the user’s intent and matches it with a

predefined action in the Command Execution

Module (CEM).

4. Text-to-Speech Conversion: The system

generates a verbal response using pyttsx3 to

provide feedback.

5. User Interaction and Response Delivery: The

response is displayed in the GUI and/or spoken

back to the user.

D. Command Execution and Customization

The assistant is equipped to handle a variety of

predefined instructions, organized into the following

categories:

1. System Commands: Open applications (e.g.,

Notepad, Calculator), control volume, manage

files.

2. Internet Functions: Execute web searches,

retrieve Wikipedia summaries, and deliver live

weather updates.

3. Productivity Tools: Set up reminders, generate

to- do lists, and configure alarms.

4. Custom Commands: Users can define their own

commands by adding new keyword-action

mappings in a configuration file.

CODE I. A sample JSON-based command

customization file:

1. {

2. "open_calculator": {

3. "keywords": ["open calculator", "start calculator"],

4. "action": "calc.exe" 5.

6. },

7. "search_google":{

8. "keywords": ["search", "google search"],

9. "action":

"https://www.google.com/search?q={query}"

10. }

11. }

E. Speech Recognition Accuracy Optimization

To improve recognition accuracy, the system

incorporates:

1. Noise Reduction Filters: Using Python’s pydub

and wave libraries to enhance audio clarity.

2. Custom Acoustic Models: Fine-tuning CMU

Sphinx for better offline recognition.

3. Contextual Correction: Implementing spell-

checking and NLP-based word prediction to

handle misrecognized words.

IMPLEMENTATION

A. Development Environment Setup

To develop and test the AI-powered voice assistant,

the following software and hardware configurations

were used:

1. Hardware Requirements

● Processor: Intel Core i5 or higher

● RAM: Minimum 8GB (recommended 16GB

for smooth performance)

● Microphone: External or built-in for voice

input

● Speaker: For text-to-speech output

2. Software Requirements

● Operating System: Windows 10/11, Ubuntu

20.04+

● Programming Language: Python 3.8+

● Python Libraries:

○ Speech Recognition:

`speechrecognition`, ̀ pydub`, wave

○ Text-to-Speech: `pyttsx3`, `gtts`

○ NLP Processing: ̀ spacy`, `nltk`, `re`

○ GUI Development: ̀ tkinter`

B. Speech Recognition Module (SRM)

The Speech Recognition Module (SRM) captures the

user's spoken input and transcribes it into textual

format. The system is equipped to perform speech-to-

text conversion through both cloud-based services,

such as Google Speech API, and offline engines like

CMU Sphinx, ensuring flexibility in various

environments.

ALGORITHM I: Implementing Speech Recognition

Input: Real-time voice input from the user

Output: Textual representation of the spoken input

Steps:

http://www.google.com/search?q

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Shivani Gupta et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 717-727

722

1. Initialize the audio recognition system.

2. Set up the microphone as the input source.

3. The system provides an indication to the user,

confirming that it is actively prepared to receive

voice input.

4. Calibrate the system for ambient noise.

5. Record the audio input from the user.

6. Initiate speech-to-text conversion by utilizing

the default online recognition engine as the

primary method for transcription.

a. If successful, return the transcribed text.

b. If unsuccessful due to network or

recognition errors, proceed to step 7.

7. Attempt to convert the audio using the

fallback (offline) recognition method:

a. If successful, return the transcribed text.

b. If unsuccessful, return a failure response.

Key Features:

● Noise reduction using

`adjust_for_ambient_noise()`.

● - Exception handling for unknown or unclear

speech input.

C. Natural Language Processing Module (NLPM)

The Natural Language Processing Module (NLPM)

processes the transcribed text and determines the

intent behind the user’s command.

Algorithm II: Rule-Based Intent Recognition

Input: A user-issued command expressed as a string.

Output: A semantic label that classifies the user’s

spoken input based on its inferred purpose.

Steps:

1. Begin

2. Convert command to lowercase.

3. If command matches the regular expression

for "open notepad" or "start notepad",

4. then set intent ← "open_notepad".

5. Else if command matches the

 regular expression for "search" or

"google search",

6. then set intent ← "search_google"

Else, set intent ← "unknown_command".
7. Return intent.

8. End

Key Features:

● Uses regular expressions for pattern-based intent

recognition.

● Recognizes multiple variations of a command

(e.g., "open notepad" or "start notepad").

D. Command Execution Module (CEM)

The Command Execution Module (CEM) maps the

detected intent to a corresponding system action.

Algorithm III: Command Execution Algorithm

Input:

● intent: A string representing the user’s

recognized intent.

● query (optional): A string parameter required

for search-type actions. Output:

System executes the corresponding command, or

returns a failure notification.

Begin

1. Switch based on the value of intent:

a. Case "open_notepad": i. Command the

operating system to open the native text editing utility

for user access.

ii. Break.

b. Case "search_google":

2. i. If query is not empty:

3. • Formulate a search address based on the

user-provided query.

4. • Launch the default browser to perform the

search operation corresponding to the user's request.

5. ii. Else:

6. • Display a message indicating that no query

was provided.

7. iii. Break.

c. Default:

i. Display an error indicating the command is

unrecognized.

End

Key Features:

● Executes system commands using ̀ os.system()`.

● Opens URLs dynamically based on user queries.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Shivani Gupta et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 717-727

723

E. Text-to-Speech (TTS) Module

The Text-to-Speech (TTS) Module generates verbal

responses using pyttsx3 for offline support.

Algorithm IV: Text-to-Speech (TTS) Generation

Input: A string text representing the verbal response

to be synthesized.

Output: Audible spoken output rendered through

the system’s speech engine.

1. Begin

a. Initialize the offline speech synthesis engine.

b. Forward the synthesized response text to the

TTS system, where it is temporarily stored

for speech conversion.

c. Activate the text-to-speech engine to

transform the buffered text into spoken

audio output.

2. End

Key Features:

● Provides offline speech synthesis using pyttsx3.

● Can be integrated with different voice profiles

for customization.

F. Graphical User Interface (GUI) Module

TThe GUI Module provides an interactive interface

for users who prefer visual feedback over voice

commands.

Algorithm V: Graphical User Interface (GUI)

Execution Workflow

Input: User-provided text command via GUI input

field.

Output: The corresponding action is executed,

and a response dialog is displayed.

Steps:

Begin

1. Initialize the main application window.

2. Set an appropriate window title that clearly

reflects the assistant's role within the interface.

3. Design an input interface element that allows

the user to enter textual commands for

processing.

4. Integrate an interactive control labeled ‘Execute’

that triggers a predefined handler function upon

activation.

5. Define the callback function `on_submit()` as

follows:

a. Retrieve the text entered in the input field.

b. Forward the text to the Intent Recognition

module to determine the user's intent.

c. Send the recognized intent and original

command to the Command Execution

module.

d. Present a dialog box that confirms the

recognized intent, thereby providing

immediate feedback to the user.

6. Render the input field and the corresponding

control button within the graphical interface

layout.

7. Start the GUI event loop to handle user

interaction. End

Key Features:

● Tkinter-based GUI for user-friendly interaction.

● Provides a text input option for users who prefer

typing over speaking.

G. System Integration and Execution

All modules are combined in a unified script, ensuring

seamless interaction between Speech Recognition,

NLP, Command Execution, TTS, and GUI.

Algorithm VI: Integrated Voice Assistant

Workflow

Objective: To enable uninterrupted monitoring of user

speech, identify user intent, carry out the relevant

operation, and deliver audible feedback—all while

preserving the responsiveness of the graphical user

interface (GUI).

Steps:

Begin

1. Initialize and display the graphical user

interface (GUI) within the primary application

thread.

2. Simultaneously, start a parallel execution

thread dedicated to handling voice-based

interactions.

3. Within the voice interaction thread, enter a

continuous loop to monitor user speech in real

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Shivani Gupta et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 717-727

724

time:

a. Continuously acquire spoken input via the

Speech Recognition Module (SRM),

designed to process audio in real time.

b. Upon detecting valid speech input:

i. Forward the transcribed command to

the Intent Recognition Algorithm for

semantic analysis.

ii. Transmit the inferred intent and the

corresponding user command to the

Command Execution Module (CEM)

for execution.

iii. Activate the Text-

to-Speech (TTS) Engine to

convert the response into audible

output.

4. Ensure both GUI and voice interaction threads

run concurrently to preserve fluid and real-time

system responsiveness.

5. End

Key Features:

● Employs multithreading to run the speech

recognition engine separately from the GUI,

preventing interface lag.

● Supports continuous voice monitoring for

seamless user interaction.

Results and Discussion

A. Performance Evaluation

To evaluate the performance of our AI-powered

voice assistant, we conducted tests focusing on speech

recognition accuracy, command execution efficiency,

response time, and user experience.

1) Speech Recognition Accuracy

We tested the system with different accents,

background noise levels, and speech speeds. The

results are summarized below:

TABLE II. SPEECH ACCURACY TABLETEST

TEST SCENARIO GOOGLE SPEECH

API (ONLINE)

CMU SPHINX

(OFFLINE)

CLEAR SPEECH (NO 98.5% 85.2%

TEST SCENARIO GOOGLE SPEECH

API (ONLINE)

CMU SPHINX

(OFFLINE)

NOISE)

MODERATE NOISE

(TV PLAYING)

92.3% 74.1%

HEAVY

BACKGROUND

NOISE

78.9% 60.7%

FAST SPEECH 88.4% 70.5%

NON-NATIVE

ACCENT

85.6% 67.2%

● Google Speech API performed better in all

conditions but requires an internet connection.

● CMU Sphinx works offline but struggles with

accents and noisy environments.

● Future improvements can include custom

acoustic models for better offline recognition.

2) Command Execution Efficiency

We measured the response time and execution

accuracy of different command categories.

TABLE III. COMMAND EXECUTION EFFICIENCY

Command Type Avg. Response

Time (Seconds)

Accuracy (%)

System

Commands

0.8 99.2

Internet Searches 1.2 97.5

Custom

Commands

1.0 96.3

● System commands executed fastest due to direct

OS interaction.

● Internet-based commands had slight delays due to

network dependency.

● Custom commands were accurate, but

improvements in NLP could reduce

misinterpretations.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Shivani Gupta et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 717-727

725

B. Comparative Analysis with Existing Voice

Assistants

We compared our assistant with Google Assistant, Siri,

and Alexa based on cost, offline support, privacy, and

flexibility.

TABLE IV. Comparative Analysis with Existing

Voice Assistants

Feature Our

Assistant

Google

Assistant

Siri Alexa

Offline

Support

Yes No No No

Custom

Comman ds

Yes Limited No No

Privacy

Control

High Low Low Low

Cost Free Subscrip

tion

Device

Cost

Device

Cost

● Our assistant outperforms commercial assistants

in privacy and offline usability.

● Limited NLP capabilities compared to Google

Assistant and Siri, but custom commands make it

more flexible for personal use.

C. User Feedback and Experience

We conducted a user study where 20 participants

tested the assistant and provided feedback.

TABLE V. User Feedback and Experience

● Users appreciated offline support and

customization options.

● Areas for improvement include better

recognition for non-native speakers and GUI

enhancements.

CONCLUSION AND FUTURE WORK

A. Conclusion

In this research, we developed an AI-powered voice

assistant with speech recognition, natural language

processing (NLP), command execution, text-to-speech

synthesis, and a graphical user interface (GUI). The

system was designed to work offline and online,

ensuring privacy and accessibility.

Key findings from our study include:

● Speech recognition achieved up to 98.5%

accuracy in ideal conditions using Google Speech

API, while offline recognition (CMU Sphinx)

reached 85.2% accuracy.

● Command execution was highly efficient, with

system commands executing in less than a second

and internet queries taking slightly longer.

● Compared to Google Assistant, Siri, and Alexa, our

assistant provides better privacy, offline usability,

and customization while being completely free

and open-source.

● User feedback highlighted ease of use (8.5/10),

command accuracy (8.2/10), and high

customizability (9.3/10), but also pointed out

areas for improvement in non-native speech

recognition and GUI enhancements.

Overall, the system demonstrates a practical, low-cost

alternative to commercial voice

assistants while maintaining strong performance

in essential tasks.

B. Future Work

Despite its strengths, several areas need improvement.

Future enhancements include:

1) Improved Speech Recognition

● Train a custom speech recognition model

Customizability 9.3

Parameter Rating (Out of 10)

Ease of Use 8.5

Recognition Speed 7.8

Command Accuracy 8.2

Voice Output Quality 7.9

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Shivani Gupta et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 717-727

726

using machine learning for better offline

performance.

● Integrate Whisper AI or DeepSpeech for

improved accuracy with non-native accents

and noisy environments.

2) Enhanced Natural Language Processing (NLP)

● Use Transformer-based models like BERT

or GPT-3.5 for context-aware intent

recognition.

● Implement a self-learning mechanism where

the assistant adapts to user preferences over

time.

3) Better User Interface (UI/UX)

● Develop a fully interactive UI using Flask or

React.js.

● Implement voice-controlled settings and

feedback customization.

4) Expanded Functionality

● Add multi-language support to enhance

accessibility.

● Integrate with smart home devices using IoT

protocols.

● Develop an Android and iOS app to extend

usability beyond desktops.

By implementing these improvements, our AI

assistant can evolve into a more intelligent, adaptive,

and widely usable system, making it a strong open-

source alternative to commercial AI assistants.

These references provided both theoretical insights

and technical frameworks that supported the

successful implementation of the AI-based voice

assistant system.

REFERENCES

[1]. A. Vaswani, N. Shazeer, N. Parmar, J.

Uszkoreit, L. Jones, A. N. Gomez, and I.

Polosukhin, “Attention Is All You Need,” in

Advances in Neural Information Processing

Systems, vol. 30, 2017.

[2]. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.

Mohamed, N. Jaitly, and B. Kingsbury, “Deep

Neural Networks for Acoustic Modeling in

Speech Recognition,” IEEE Signal Processing

Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[3]. A. Radford, K. Narasimhan, T. Salimans, and I.

Sutskever, “Improving Language Understanding

with Unsupervised Learning,” OpenAI, 2018.

[4]. J. Chen, D. Parikh, and A. Gupta, “Learning

from Language Explanations for Visual

Reasoning,” in Proceedings of the European

Conference on Computer Vision (ECCV), pp.

103–120, 2018.

[5]. A. Baevski, H. Zhou, A. Mohamed, and M.

Auli, “wav2vec 2.0: A Framework for Self-

Supervised Learning of Speech

Representations,” in Advances in Neural

Information Processing Systems (NeurIPS),

2020.

[6]. Google Developers, “Google Speech-to-Text

API Documentation,” 2023. [Online]. Available:

https://cloud.google.com/speech-to-text

[7]. Mozilla DeepSpeech, “DeepSpeech

Documentation,” 2023. [Online]. Available:

https://deepspeech.readthedocs.io

[8]. IBM Watson, “IBM Watson Speech Services

Overview,” 2023. [Online]. Available:

https://www.ibm.com/cloud/watson-speech-to-

text

APPENDICES

A. System Architecture Diagram

Below is the block diagram illustrating the

components and workflow of our AI assistant:

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Shivani Gupta et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 717-727

727

Fig. 1. System Architecture Diagram

This architecture ensures real-time processing, speech

recognition, and command execution.

B. Hardware and Software Requirements

References

Hardware Requirements

● Processor: Intel Core i5 (or equivalent) and above

● RAM: 8GB (Minimum), 16GB (Recommended)

● Storage: At least 10GB free space

● Microphone: High-quality noise-

canceling microphone

● Speakers: For voice response playback Software

Requirements

● Operating System: Windows 10/11, macOS,

Linux (Ubuntu recommended)

● Python: Version 3.9+

● Libraries: SpeechRecognition, pyaudio, pyttsx3,

nltk, OpenAI GPT API (optional)

● Additional tools: Flask (for GUI),

TensorFlow/PyTorch (for ML models)

C. Sample Commands and Responses

Below are some sample commands our assistant

processes:

Command Response

"What’s the time?" "The current time is 3:45 PM."

"Open Google "Opening Google Chrome now."

Chrome"

"Tell me a joke" "Why did the developer break

 up? Because he couldn't

commit!"

"Convert 5

kilometers to

miles"

"5 kilometers is

approximately 3.1 miles."

"What's the

 weather

today?"

"Fetching weather details... It’s

currently 25°C with clear skies."

D. Experimental Setup

The experiments for evaluating the system were

conducted under three different environments:

1. Silent room (Ideal condition)

2. Moderate noise (Background TV sounds)

3. High noise (Crowded café simulation)

We also tested speech recognition across various

accents and speech speeds to ensure robustness.

E. Source Code Repository

The complete source code for the AI-powered voice

assistant is available on GitHub:

https://github.com/mahider78672/Jarvis

https://github.com/mahider78672/Jarvis

