

Print ISSN - 2395-1990 Online ISSN : 2394-4099

Available Online at :www.ijsrset.com doi : https://doi.org/10.32628/IJSRSET

A Semi-Supervised Learning Approach for Quality-Based Web Service Classification

Gundluru Hareesh¹, S. Muni Kumar²

¹MCA Student, Department of Computer Science, KMM Institute of Post-Graduation Studies, Tirupati, Tirupati (D.T), Andhra Pradesh, India

²Associate Professor, Department of Computer Science, KMM Institute of Post-Graduation Studies, Tirupati, Tirupati (D.T), Andhra Pradesh, India

ARTICLEINFO

Article History:

Accepted : 19 May 2025 Published: 24 May 2025

Publication Issue :

Volume 12, Issue 3 May-June-2025

Page Number :

351-358

ABSTRACT

The "Web Service Classification and Recommendation" project aims to beautify the system of choosing and recommending internet offerings the use of device learning techniques. The venture is split into two primary additives: Classification Model: This model classifies internet offerings into satisfactory categories-Bronze, Silver, Gold, and Platinum-based on key Quality of Service attributes like response time, availability, reliability, and throughput. The version is built the usage of numerous gadgets studying algorithms, inclusive of Decision Trees, Support Vector Machines, Logistic Regression, K-Nearest Neighbors, Naive Bayes, Random Forest, Multi-Layer Perceptrons, and XGBoost. Additionally, Explainable AI is hired to offer transparency and interpretability within the category selections, allowing users to apprehend why a web service falls into a particular satisfactory class. Recommendation Model: Using the K-Nearest Neighbors set of rules, this version recommends the top 10 most applicable web services primarily based on consumer-inputted QoS attributes. It computes the similarity among the enter statistics and present internet services to provide tailor-made tips. The system's person-pleasant interface lets in customers to add internet provider facts, view type consequences, and receive customized hints. The challenge provides an efficient and scalable answer for choosing awesome net services, permitting users to make information-driven choices based totally on performance metrics. With its twin approach-type and advice-this machine improves selectionmaking, complements user revel in, and supports organizations in optimizing service choice.

Keywords: Web services, Recommendation, classification, KNN.

Copyright © 2025 The Author(s): This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

INTRODUCTION

In nowadays virtual panorama, choosing the most suitable internet service for a specific requirement is a complex venture because of the sizeable variety of available options. Traditional techniques like keyword matching or primary filtering often fall brief, especially while comparing services across diverse first-class metrics together with response time, availability, throughput, and reliability. This task, "Web Service Classification and Recommendation," tackles this task via combining system studying-based totally class with а recommendation system.

Objective Of Project:

The goal of this undertaking is to increase a clever machine that classifies web offerings into great classes (Bronze, Silver, Gold, Platinum) the usage of gadget learning algorithms and Explainable AI (LIME). The system additionally recommends applicable services primarily based on key overall performance metrics, aiming to enhance carrier choice and decisionmaking accuracy.

Problem Statement:

With rising web services, selecting the best based on quality metrics like response time and reliability is complex. This project offers classification, personalized recommendations, and transparency using Explainable AI.

Motivation:

With growing internet services, customers warfare to locate the proper one. This venture uses gadget mastering and Explainable AI to classify offerings and provide personalized, obvious suggestions for better choice-making.

Scope:

This challenge ambitions to classify and advocate net offerings the usage of performance metrics, gadget learning, and Explainable AI, ensuring accurate provider choice thru scalable, obvious models across diverse enterprise applications.

LITERATURE REVIEW

[1] Web provider category is a vital task for organizing and rating offerings primarily based on their first-rate and performance attributes. Several tactics have been proposed, which include rule-based totally class systems and system learning strategies. Some conventional systems rely upon simple threshold-based totally regulations for categorizing offerings, along with classifying services based on predefined performance benchmarks like reaction time or uptime. However, those structures often fail to provide personalised and dynamic classifications, main to suboptimal decision-making.

[2] Recommendation structures were broadly used throughout various domain names to indicate applicable objects based on person choices. In the context of web offerings, advice structures leverage performance metrics consisting of response time, availability, throughput, and reliability to signify the quality services to customers.

[3] Machine gaining knowledge of strategies, together with K-Nearest Neighbors, Random Forest, Naive Bayes, and XGBoost, have tested to be powerful in both category and advice tasks. These fashions are mainly useful in managing large datasets with more than one first-rate attribute, as they can adapt to various sorts of input and output codecs.

[4] Explainable AI has won significant significance in current years, specifically for programs that require transparency and interpretability. LIME (Local Interpretable Model-agnostic Explanations) is one of the most distinguished XAI strategies used to explain machine getting to know version predictions. In the context of web provider category, LIME allows to offer insights into why a particular provider become categorized into a specific exceptional class, along with Bronze, Silver, Gold, or Platinum. The use of LIME in provider classification fashions enhances user agree with inside the device with the aid of imparting obvious motives for the predictions. Several research have carried out LIME to category

responsibilities in various domain names, demonstrating its capability to enhance the interpretability of complicated fashions like Random Forest and XGBoost.

[5] The effectiveness of an internet service recommendation or category system relies upon in large part on the quality metrics used to assess offerings. Web services are regularly evaluated based totally on key Quality of Service (QoS) attributes, consisting of response time, availability, throughput, reliability, and fulfillment fee. Several studies have focused on defining and amassing relevant QoS metrics that may offer a correct representation of carrier overall performance. Response time, for example, is an essential metric for comparing the responsiveness of net services, while availability and indicate the carrier's reliability uptime and consistency. Some researchers have explored how to dynamically replace these metrics in real-time to mirror converting carrier conditions. Recent advancements have caused the improvement of frameworks that permit for the efficient series and analysis of QoS information, enhancing the reliability of net service classification and recommendation systems.

EXISTING METHOD

Traditional web carrier selection systems rely on fundamental filtering strategies, keyword matching, or rule-based guidelines. These strategies use a constrained range of predefined criteria, consisting of reaction time or availability, to rank net offerings. And additionally, this for classification and recommendation there is no combined device.

METHODOLOGY

The proposed system integrates two key components: a classification model and a recommendation model, both powered by advanced machine learning algorithms. The classification model uses algorithms such as Decision Trees, Support Vector Machines, K-Nearest Neighbors, Random Forest, XGBoost, and others to classify web services into quality categories like Bronze, Silver, Gold, and Platinum. These categories are based on a comprehensive set of quality attributes, including response time, availability, reliability, throughput, and more. The recommendation model uses KNN to recommend the top 10 most relevant web services based on userprovided input data. To ensure transparency, the classification model is augmented with Explainable AI, enabling users to understand why a service was classified into a certain category.

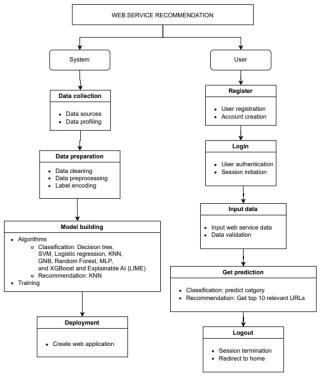


Fig: Flow

In today's digital panorama, choosing the most suitable web carrier for a selected requirement is a complex task due to the sizable number of available alternatives. Traditional strategies like keyword matching or fundamental filtering often fall brief, in particular when comparing offerings across diverse first-rate metrics along with response time, throughput, reliability. This availability, and assignment, "Web Service Classification and Recommendation," tackles this mission by combining

machine studying-primarily based category with an advice system.

The middle goal is to classify net offerings into 4 best tiers—Bronze, Silver, Gold, and Platinum—the usage of overall performance metrics. Classification algorithms inclusive of Decision Trees, Support Vector Machines (SVM), and Logistic Regression are applied to institution offerings based totally on best signs. This categorization offers users with a clean expertise of provider reliability and performance.

To enhance usability, a advice engine primarily based at the K-Nearest Neighbors set of rules shows the pinnacle 10 services that align carefully with persondescribed wishes. For more transparency, Explainable AI techniques like LIME are incorporated, permitting users to understand why a provider become located in a positive category.

Designed to address massive-scale, dynamic datasets, the device is scalable, adaptable, and relevant across domain names like e-commerce, banking, and cloud computing, enhancing both user decision-making and carrier first-class choice.

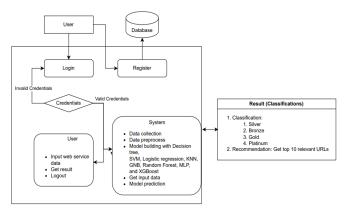


Fig: Architecture

Step 1: Data Collection: The first step includes amassing a dataset that carries great metrics of diverse net offerings. These metrics consist of important features which include Response Time, Availability, Throughput, Success ability, Reliability, Compliance, Best Practices, Latency, and Documentation. This statistic gives the muse for education the advice version. Step 2: Data Pre-processing: To make sure that the K-Nearest Neighbors model can examine these metrics uniformly, the code applies a Min Max Scaler to normalize the feature values. This scales all values to a 0-1 variety, stopping functions with larger degrees from dominating the distance calculations. Preprocessing steps consist of:

- Selecting relevant functions from the dataset.
- Applying normalization to standardize the statistics.

Step 3: Model Training: The recommendation model is educated the usage of the K-Nearest Neighbors set of rules, applied with Nearest Neighbors from the sklearn Buddies module. The key steps in model training include:

- Initializing the KNN version with neighbors=10 to retrieve the ten maximum comparable services for any given enter.
- Using the in-shape method to educate the version on the pre-processed dataset, where it learns the patterns in the provider metrics.

Step 4: Model Saving: The educated version and the Min Max Scaler are stored the use of the joblib library. This step guarantees that the model may be reloaded for destiny predictions without retraining, enhancing efficiency for real-time or batch predictions. Specifically:

- The model is saved as knn_recommender_model. Joblib.
- The scaler is saved as scaler. Joblib.

Step 5: Model Prediction: The code includes a suggestions characteristic to generate predictions for user inputs. When a person offers enter statistics (e.G., preferred great metrics), the method entails:

- Scaling the enter records the use of the stored Min Max Scaler to align it with the education records' scale.
- Passing the scaled enter to the KNN model's neighbors' approach to become aware of the 10 nearest net offerings based totally at the similarity in pleasant metrics.

• Retrieving the endorsed net services' URLs using the indices back through the neighbors' method.

Step 6: Displaying Results: The system shows the pinnacle 10 maximum applicable net provider URLs to the person. This enables customers to view and select from a listing of suggestions that first-class healthy their enter criteria based at the KNN version's similarity calculations. This methodology permits the recommendation machine to provide real-time, personalised tips based totally on great metrics, helping customers select ultimate internet offerings tailor-made to their requirements.

K-Nearest Neighbors:

The K-Nearest Neighbors set of rules is a simple but effective approach for recommendation structures. It works through finding the "K" maximum comparable items to a given question item primarily based on a hard and fast of functions. First, the facts are preprocessed, typically through normalization, to make sure consistent scaling of features. Then, the KNN version calculates the gap (often Euclidean) among the query and each object within the dataset. The K nearest gadgets is recognized because the maximum similar. In a recommendation device, those nearest acquaintances represent the recommended items, offering users with options that closely align with their possibilities or requirements.

Decision Tree:

Decision Trees are extensively used machine mastering algorithms recognised for his or her simplicity and interpretability. They classify data by using recursively splitting it into subsets primarily based on the most widespread functions, making choices at every node. In this task, Decision Trees are applied to categorize internet offerings into four firstrate levels: Bronze, Silver, Gold, and Platinum. The class system starts by selecting the function that offers the highest facts advantage or the biggest reduction in Gini impurity. This selected feature is used to cut up the dataset into branches, every representing a probable outcome. The procedure maintains recursively, forming a tree shape wherein every leaf node represents a final category label.

In Python, accuracy is a common metric used to evaluate the performance of classification models in machine learning. It represents the proportion of correctly predicted labels compared to the total number of predictions made. Accuracy gives a quick and straightforward understanding of how well a model is performing. It is especially useful when the dataset is balanced, meaning the classes have an equal or similar number of samples. However, in cases of imbalanced datasets, accuracy alone might be misleading, as it can be high even if the model fails to predict the minority class correctly.

RESULTS

HOME PAGE: The Home page serves as the landing page of your application.

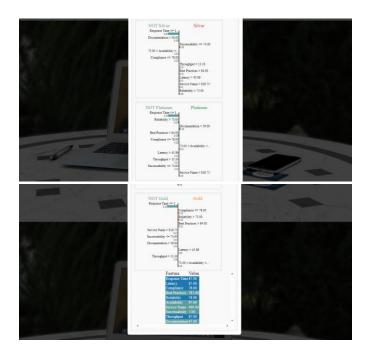
ABOUT PAGE: The About Page offers detailed information about the project.

WEB SERVICE CLASSIFICATION	& RECOMMENDATION	Home		Register	LogIn
services using machine learning techn classifies web services into quality cat like response time, availability, reliabi Decision Trees, Support Vector Mach	Recommendation" project aims to enhance iques. The project is divided into two prim egories—Bronze, Silver, Gold, and Platinum lity, and throughput. The model is built usi ines (SVM), Logistic Regression, K-Neares	ary components: Clas —based on key Quali ing several machine k t Neighbors (KNN), N	sification N ty of Service earning algo laive Bayes	lodel: This mo (QoS) attribu rithms, includ , Random Fore	del tes ing est,
Multi-Layer Perceptrons (MLP), and					
interpretability in the classification de Recommendation Model: Using the K services based on user-inputted QoS provide tailored recommendations. Th results, and receive personalized recor	cisions, allowing users to understand why a Nearest Neighbors (KNN) algorithm, this to attributes, It computes the similarity beth e system's user-friendly interface allows us mmendations. The project provides an effici	web service falls into model recommends to ween the input data sers to upload web se ient and scalable solution	a particular he top 10 m and existing rvice data, v tion for sele	quality catego ost relevant w web services iew classificat cting high-qua	ory. veb i to ion lity
interpretability in the classification de Recommendation Model: Using the K services based on user-inputted QoS provide tailored recommendations. Th results, and receive personalized reco web services, enabling users to make	cisions, allowing users to understand why a Nearest Neighbors (KNN) algorithm, this i attributes. It computes the similarity betw e system's user-friendly interface allows us	web service falls into model recommends ti ween the input data sers to upload web se ient and scalable solui nce metrics. With its	a particular he top 10 m and existing rvice data, v tion for sele dual approa	quality catego ost relevant w web services iew classificat cting high-qua chclassificat	ory. veb i to ion lity ion

REGISTRATION: The Registration Page allows new users to create an account with the application. It typically includes fields for entering personal information such as name, email, password.

LOGIN PAGE: The Login Page enables users to access their existing accounts by entering their credentials. It usually includes fields for entering a username/email and password.

HOME PAGE: After user successfully login this page will be appear.


Prediction PAGE: The Prediction Page allows users to input data and receive predictions based on the trained machine learning models. This page typically includes a form or interface for uploading or entering data

Result PAGE: In here result will be display which is predicted by our trained model.

URL Distance Presente Available Available <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
http://net/meticzame/king/werd/explane/king/weid/weid/weid/init/applane/king/weid/king	lity	Availab	vailabi	ility Throughp	
Webserverdention min governmenzendenties aum vireadi 15.2391531681610, 107,0 100,0 0,0 <td></td> <td>98</td> <td>98</td> <td>24.4</td> <td></td>		98	98	24.4	
Bit inverse richt mit mit geverentlege kellekte kannel hendeligt felte kannel 2000 33 sind. 15.2534770704003 0.0		96	96	24.2	
http://www.shikation.com/uncryptoplatidations.com/units/lises under shikation 19.23930716090917 0.0		94	94	27.0	
http://websole.op/initial/initial/selected/20000013.studi 10:20477070566000 10:20 00 0.01 http://websole.op/initial/selected/20000013.studi 10:2047707056000 0.01 0.00 0.01 http://websole.op/initial/selected/20000013.studi file/additial/selected/2000001 10:2047707056000 10:0 0.00 http://websole.op/initial/selected/2000001 file/additial/selected/2000001 file/additial/selected/2000001 file/additial/selected/2000000 file/additial/selected/2000000 http://websole.op/initial/selected/2000001 file/additial/selected/2000000000000000000000000000000000000		92	92	25.6	
Mill		99	99	31.6	
http://www.fatherweid/doi.org/d		89	89		
Implicite 120001042300377 170 0<					
Vacuut Lingtonia Internet and service definition vice definitavice definition vice definitavice definition vice defin		100	100	21.6	
Recommended Web Address Periods Availability Throughput Buccessability Retiability Compliance East Practice Latency Documentation 12 40.0 07 43.1 09 73 100 44 10 5 28 60.0 60.4 41.0 65 73 100 64 50 3 20 00.0 80.4 40.4 64 78 69 30 30 20 00.0 80.3 40.4 64 70 69 30 30 20 00.0 80.3 30.7 64 80 69 30 32 20 00.0 81.3 37.7 64 73 78 75 10 3 21 10.0 91 30.8 69 10.0 80 10 10 10 12 21 10.0 92 30.8 60 10 10 <		98	98	34.4	
Response Time Availability Throughput Successibility Reliability Compilance Rest, Parallelic Latinety Documentation 31 41.0 07 43.1 09 73 100 44 10 5 20 0.20 0.33 41.2 64 67 69 77 20 100 20 0.20 0.33 40.4 84 78 89 69 3.0 3 205 0.70 0.80 40.1 0.5 73 100 64 10 10 56 57.0 0.80 40.1 0.5 73 100 64 10 10 50 82.0 63.3 37.7 64 73 100 64 10 0 20 10.2 10.2 0.80 100 0.7 10 30 120 20 10.2 10.2 10.2 10.2 10 10 10 <tr< td=""><td></td><td>99</td><td>99</td><td>14.5</td><td>- 8</td></tr<>		99	99	14.5	- 8
Time Availability Introduction Backbackbackbackbackbackbackbackbackbackb					
31 410 97 431 99 73 100 64 10 5 29 62.0 63 41.2 64 67 69 77 2.0 10 20 67.0 80 41.0 65 73 100 64 50 3 203 60.0 65 40.1 65 73 100 64 10 10 50 62.0 63 35.7 64 60 69 57 2.0 3 63 112.0 83 37.7 84 73 78 75 1.0 3 206 70.0 61 30.6 67 73 100 64 10 69 207 0.7 0.2 30.9 67 73 100 64 10 69 76 103.0 64 36.9 60 100 67 1.0 6 <t< td=""><td>ocun</td><td>itency D</td><td>ncy D</td><td>Documentation</td><td></td></t<>	ocun	itency D	ncy D	Documentation	
20 8.0 6.3 41.2 64 67 69 77 2.0 19 560 67.0 66 41.0 65 73 100 64 50 3 233 69.0 83 40.4 64 78 69 69 3.0 3 560 57.0 66 40.1 65 73 100 64 10 10 500 82.0 83 38.7 64 80 69 57 2.0 3 63 112.0 63 37.7 64 73 78 75 1.0 3 207 07.0 69 50.9 67 73 100 64 10 12 76 10.3 94 30.6 68 80 100 87 1.0 8 10 76 10.3 94 30.6 68 80 100 87 1.0 8 1 76 10.3 94 30.6 68 80 100 87					
966 67 0 86 41.0 65 73 100 64 5.0 3 233 80.0 83 40.4 64 78 89 89 3.0 3 566 57.0 86 40.1 65 73 100 64 10 10 568 62.0 83 38.7 64 60 69 67 2.0 3 63 112.0 83 37.7 84 73 78 75 1.0 3 207 107.0 91 36.9 97 73 100 64 10 19 206 70 94 30.9 97 73 100 64 10 19 207 10.3 94 36.9 69 100 100 87 1.9 8 Choose Service, Name 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td></td> <td></td> <td></td> <td></td> <td></td>					
233 80 83 40.4 84 78 89 89 30 3 566 57.0 86 40.1 65 73 100 64 10 10 566 62.0 83 33.7 64 80 69 57 2.0 3 63 12.0 83 37.7 64 80 69 91 3.0 12.0 207 107.0 91 36.9 67 8.3 69 91 3.0 12.0 206 74.0 0.2 36.9 67 7.3 100 64 10 69 716 10.3 94 36.6 69 80 100 87 19 8 10.3 94 36.6 69 80 100 87 19 8 10.0 87 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
560 57.0 66 40.1 05 73 100 64 10 10 568 62.0 63 363 367 64 60 69 57 2.0 3 63 112.0 63 37.7 64 73 78 75 1.0 3 237 107.0 01 30.9 07 73 100 64 1.0 69 740 103.0 04 30.8 69 80 100 87 1.0 84 740 103.0 04 30.8 69 80 100 87 1.0 84 740 103.0 04 30.8 69 80 100 87 1.0 84 Externed totoon Closed Service, Manet 10					
506 8.2.0 8.3 3.8.7 84 80 89 57 2.0 3 93 112.0 8.3 3.7.7 84 73 75 1.9 3 227 107.0 91 36.9 67 8.3 69 91 3.0 1.2 200 74.0 0.2 36.9 67 7.3 100 64 1.0 69 716 10.3.0 94 36.6 69 80 100 87 1.9 8 VEE SERVICE RECOMMENDATION Hone Recommendation Classificat Chaose Service Jame: Exter Regional Successability 2 1		3.0).	3	
011 012 03 377 74 73 75 10 3 237 107 0 1 36.9 07 83 89 91 3.0 12 200 78.0 92 36.9 07 73 100 64 1.0 89 716 10.0 94 39.6 98 80 100 87 1.0 8 WEB SERVICE RECOMMENDATION Home Recommendation Classificat Choose Service Jame Consplices Consplices Consplices		1.0	6	10	
237 107.0 91 36.9 97 83 69 91 3.9 12 266 78.0 92 36.9 97 73 100 64 1.0 69 716 103.0 94 38.6 98 80 120 87 1.0 8 WEB SERVICE RECOMMENDATION Home Recommendation Classification Closes Service, Jame:		2.0		3	
237 107.0 91 36.9 97 83 69 91 3.9 12 266 78.0 92 36.9 97 73 100 64 1.0 69 716 103.0 94 38.6 98 80 120 87 1.0 8 WEB SERVICE RECOMMENDATION Home Recommendation Classification Closes Service, Jame:		1.0		3	
200 70.0 62 30.9 67 73 100 64 1.0 89 740 103.0 94 30.6 69 80 100 87 1.0 8 WEB SERVICE RECOMMENDATION Home Recommendation Classificat Difference					
716 103.0 94 39.6 98 80 100 87 1.9 8 WEB SERVICE RECOMMENDATION Home Recommendation Classification Cla					- 10
WEB SERVICE RECOMMENDATION Hore Recommendation Classificat					
Erter Response Tine Austrability Throughout Successibility Reliability Compliance					
Availability 2 Throughput Successability Restability Compliance					
Trauphput Soccessability Retability Compliance					
Successatility Restability Conpliance					
Relatily Conflines					
Refuility Conpliance					
Corpans				2 -	
Prediction: Bronze					
Frederiction, Dionze					
Explanation:					
Prediction probabilities					
Broze 1.00 Gdd [0.00					
Pidtinum 0.00					
Silver 0.00					
NOT Bronze Bronze					
Elevery > 45.86					
Earthy >+3.80					
Litteric > 43.80 Cemplance ~ 71.00					
10					
Ti John Anzahabity - 73.00					
Officiality > 73.00					

Test Cases:

Input	Output	Result
Input	Tested for different model given by user on the different model.	Success
Model	Tested for different input given by the user on different models are created using the different algorithms and data.	Success
Prediction	Prediction will be performed using the different models build from the algorithms.	Success

Test cases Model building:

S.NO	Test cases	I/O	Expected O/T	Actual O/T	P/F
1	Read the	Dataset's	Datasets need	Datasets	It produced
	datasets.	path.	to read	fetched	P. If this not
			successfully.	successfully.	F will come
2	Registration	Valid	Verify that the	User is	It produced
		username,	registration	successfully	P. If this is
		email,	form accepts	registered,	not, it will
		password.	valid user	and an	undergo F.
			inputs and	account is	
			successfully	created	
			creates a new		
			account.		
3	Login	Valid	Verify that	User is	It produced
		usemame	users can log	successfully	P. If this is
		and	in with valid	logged in	not, it will
		password	credentials	and	undergo F.
				redirected to	
				the	
				dashboard	
4	Classification	Input Web	Output as	Output as	It produced
		service data	category from	given any	P. If this is
			silver, gold,	one of these	not, it will
				categories	undergo F

			platinum, bronze		
5	Recommendation	Input Web	Output as top	Output as	It produced
		service data	10 relevant	top 10	P. If this is
			web address	relevant web	not, it will
				address	undergo F

CONCLUSION

In conclusion, this challenge addresses the growing complexity of selecting net offerings by using offering a statistics-pushed, scalable, and user-pleasant solution. It has big packages across diverse industries, together with e-trade, cloud computing, and on-line platforms, where green and reliable service selection is critical for making sure seamless operations and more desirable person experiences. The mission lays the inspiration for future improvements, together with integrating collaborative filtering, real-time

service excellent updates, and multi-language support, to in addition extend its skills and person attain.

REFERENCES

- Z. Jia, Y. Fan, J. Zhang, X. Wu, C. Wei and R. Yan, "A Multi-Source Information Graph-Based Web Service Recommendation Framework for a Web Service Ecosystem," in Journal of Web Engineering, vol. 21, no. 8, pp. 2287-2312, November 2022.
- [2]. B. Jiang, J. Yang, Y. Qin, T. Wang, M. Wang and W. Pan, "A Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering," in IEEE Access, vol. 9, pp. 50880-50892, 2021,
- [3]. Sivanandam, C., Seethapathy, B.K. & Doss, D. HBO-BiLSTM: hybrid bat optimizer-based bidirectional long short-term memory for secure web service recommendation. Wireless Netw (2024).
- [4]. Pandey, A., Mannepalli, P.K., Gupta, M. et al. A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation. Neural Process Lett 56, 234 (2024).
- [5]. Masoumeh Alinia, Seyed Mohammad Hossein Hasheminejad, DiSA-CF: A distance-integrated self-attention model for collaborative filtering in web service recommendation, 2024.
- [6]. Zhang, Y., & Zhou, M. (2023). "A Novel Hybrid Recommender System for Web Services Using Deep Learning and Collaborative Filtering." Journal of Internet Services and Applications, vol. 14, no. 3, pp. 189-206.
- [7]. Chen, X., Liu, Y., & Xu, T. (2022). "Dynamic Service Recommendation Using Graph Neural Networks for Complex Web Service Ecosystems." IEEE Transactions on Services Computing, vol. 15, no. 6, pp. 1175-1187.

- [8]. Wang, L., & Huang, R. (2023). "A Self-Attention Based Deep Learning Model for Real-Time Web Service Recommendation." IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp. 1238-1250.
- [9]. Singh, A., & Verma, P. (2022). "Enhancing Web Service Recommendations with Multi-Objective Optimization and Ensemble Learning." Expert Systems with Applications, vol. 196, article 116481.
- [10]. Lee, J., & Kim, H. (2023). "Context-Aware and Personalization-Driven Web Service Recommendation Using Reinforcement Learning." Knowledge-Based Systems, vol. 259, article 110011.