

Copyright © 2025 The Author(s): This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN - 2395-1990

Online ISSN : 2394-4099
Available Online at :www.ijsrset.com

doi : https://doi.org/10.32628/IJSRSET

784

Web-Based Data Management System
Prof. Kumkum Bala1, Avinash Balaji Dadge2, Shruti Sunil Kude2, Sakshi Suresh Jadhav2,

Amol Shahadev Funde2
1Assistant Professor, Bharati Vidyapeeth’s College of Engineering, Lavale, Pune, Maharashtra, India

2Student, Bharati Vidyapeeth’s College of Engineering, Lavale, Pune, Maharashtra, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted : 28 May 2025

Published: 03 June 2025

 The rapid expansion of meteorological data collection networks has

underscored the need for centralized, real-time data management

platforms that can accommodate large volumes of heterogeneous data

while ensuring accessibility, security, and scalability. This research

introduces a web-based data management system tailored for

meteorological applications, integrating advanced data ingestion pipelines,

robust role-based access controls, and dynamic visualization modules. By

leveraging a three-tier architecture comprising a PHP-based application

server, MySQL for data persistence, and a JavaScript-driven front end

enhanced with Chart.js and D3.js the proposed system streamlines the

collection, processing, and dissemination of weather-related information

from distributed stations. Emphasis is placed on encrypted storage using

AES cryptography, RESTful API design for third-party integrations, and

responsive dashboard interfaces that facilitate interactive analysis of real-

time and historical weather patterns.

Keywords: Meteorological Data, Web-Based System, Real-Time

Visualization, Role-Based Access Control (RBAC), PHP, MySQL, Data

encryption.

Publication Issue :

Volume 12, Issue 3

May-June-2025

Page Number :

784-794

INTRODUCTION

Weather impacts nearly every aspect of our daily lives

from deciding what to wear when we step outside to

planning large-scale agricultural activities or

preparing for natural disasters. Around the world,

countless meteorological stations continuously collect

data on temperature, humidity, wind speed, pressure,

rainfall, and more. Traditionally, this information has

been stored in desktop applications, spreadsheets, or

even paper logs, making it difficult to access and

analyze all data in one place. For example, a

researcher might have to manually combine

spreadsheets from different stations or write custom

scripts to visualize temperature trends over time. This

fragmentation slows down decision-making and can

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Prof. Kumkum Bala et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 784-794

785

lead to missed opportunities for timely weather-

related alerts.

Advances in web technology have made it possible to

build online platforms that gather data from multiple

sources and present it in a unified, easily accessible

way. By using a web-based system, users can view

real-time information from any location with an

internet connection whether it’s a scientist checking

wind speed before launching a weather balloon, an

emergency manager tracking heavy rainfall to issue

flood warnings, or simply someone curious about

today’s humidity levels. However, creating such a

system is not as straightforward as it may seem. We

must address challenges like handling large volumes

of continuous data, ensuring that only authorized

people can view certain information, and providing

interactive visualizations that update quickly without

reloading the entire page.

Another important aspect is security. When

meteorological data feeds come from automated

sensors (such as those in remote rural areas), the data

packets might travel over various networks before

reaching a central server. Without proper security

measures, someone could intercept or tamper with

these data streams. Similarly, when users log in to see

sensitive analysis perhaps historical data that only

authorized analysts should view we need a way to

confirm their identities and prevent unauthorized

access. To tackle these concerns, our platform

employs encryption for both data at rest (when it’s

stored in the database) and data in transit (when it’s

traveling between server and client). We also use a

role-based access control system so that general users,

analysts, and administrators each have clearly defined

permissions.

Performance is another core consideration.

Meteorological stations can generate thousands of

individual readings every minute especially during

stormy conditions or rapidly changing weather

patterns. Storing and retrieving this volume of data

quickly is critical. If a system responds too slowly,

users will see outdated information, and alerts might

fail to trigger in time. For this reason, we optimized

our database with proper indexing strategies and

considered caching frequently accessed data. We also

designed our server-side scripts to process incoming

data in batches, reducing the overhead of database

commits. The result is a system that retrieves and

displays up-to-the-minute data, even when hundreds

of users are connected simultaneously.

Beyond real-time monitoring, there is tremendous

value in visualizing historical trends. Scientists often

look at temperature patterns over years to study

climate change, agricultural agencies compare rainfall

records to plan irrigation schedules, and disaster

management teams review past storm data to improve

future response plans. A robust platform must

therefore support both live data feeds and historical

archives, allowing users to filter by date range, station

location, or specific weather parameters. To make

these visualizations intuitive, our front end uses

popular JavaScript libraries like Chart.js and D3.js.

These tools enable smooth, interactive charts that

update dynamically without requiring the user to

refresh the entire page. Users can zoom in on a week-

long period to examine hourly fluctuations or zoom

out to see multi-year trends with just a few clicks.

LITERATURE REVIEW

Dinku et al., “Automatic Weather Station Data Tool

(ADT): A Web‐Based Platform for Data Quality and

Visualization” (2021)

Dinku and colleagues developed ADT to address the

challenges faced by National Meteorological Services

(NMS) in Africa, where station metadata, naming

conventions, and formats vary widely across countries.

The platform incorporates automated quality‐control

algorithms such as range checks, temporal consistency

tests, and spatial‐neighbor comparisons to flag suspect

readings before ingestion. Once validated, data are

stored in a MySQL database with a flexible schema

that can accommodate differences in variable names

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Prof. Kumkum Bala et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 784-794

786

(e.g., “Temp_C” vs. “T_Celsius”) by using metadata

tables to map local names to standardized fields. The

front end uses PHP and JavaScript (Chart.js) to deliver

interactive dashboards: NMS operators can

immediately see which stations are offline, view time‐

series plots for temperature, precipitation, humidity,

and wind, and download cleaned datasets in CSV

format. Crucially, ADT’s modular architecture

separates the ingestion, quality control, and

visualization layers, allowing each to scale

independently an approach that significantly reduced

data‐processing time (by over 60 %) compared to

manual spreadsheet workflows in pilot deployments

across Ethiopia and Kenya.

Beyond basic quality checks, Dinku et al. also

incorporated an alert system: when a station’s reading

deviates significantly from both historical baselines

and nearby station data (e.g., temperature drop >

10 °C within an hour), ADT flags the reading for

manual review. Although no automated notifications

(email/SMS) were included in their initial release, the

paper laid the groundwork for integrating an alert

engine that compares each new record against user‐

defined rules. Architecturally, ADT’s use of a three‐

tier LAMP stack (Linux, Apache, MySQL, PHP) with

AJAX‐powered visualizations demonstrated that even

resource‐constrained NMS offices could deploy a

responsive, web‐based system without expensive GIS

licenses. By 2023, follow‐up studies reported that

ADT had become a core tool for data management in

five African countries, demonstrating the importance

of standardized metadata and flexible ETL pipelines

for multi‐nation platforms.[1]

Zhan et al., “VoxelSky‐3D: Real‐Time 3D Weather

Radar Visualization for Air Traffic Control” (2022)

Zhan and colleagues identified the limitations of

traditional 2D radar displays in conveying vertical

atmospheric structures critical to aviation safety.

VoxelSky‐3D addresses these gaps by voxelizing

volumetric radar reflectivity fields and rendering

them in a browser using WebGL. Their system

converts raw radar data (in NEXRAD Level II format)

into a hierarchical 3D grid of voxels, each

representing reflectivity values at specific altitudes

and geographic coordinates. On the server, a C++‐

based conversion pipeline (using OpenMP for

parallelization) ingests daily high‐resolution volume

scans (up to 10 GB per minute) and writes them into a

custom multiresolution format. The client uses glTF‐

encoded 3D meshes and WebGL shaders to render

isosurfaces (e.g., 30 dBZ thresholds) and embed them

in an interactive map oriented to the local airport’s

coordinate frame. This architecture ensures that

ATCOs can visualize storm cores up to 15 km altitude

in real time, achieving frame rates above 30 fps even

with concurrent data requests from multiple users.

The study evaluated VoxelSky‐3D in Guangzhou

Baiyun International Airport’s control center,

showing that three‐dimensional renderings helped

controllers detect hazardous convective cells earlier

than with 2D slice overlays. The authors also

implemented level‐of‐detail (LOD) selection: when

zoomed out, low‐resolution volumetric blocks are

fetched; when zoomed in, higher‐detail blocks are

streamed. Data streaming uses a chunked approach

over WebSocket, minimizing startup latency.

Although primarily targeted at ATC, the paper’s

technical contributions voxelization algorithms,

WebGL‐based rendering optimizations, and

hierarchical data streaming have broader applicability

for any real‐time meteorological visualization system.

VoxelSky‐3D underscores the importance of client‐

side GPU acceleration and adaptive streaming when

dealing with large volumetric datasets in a web

environment.[2]

Schneegans et al., “STRIELAD: A Toolkit for Real‐

Time Exploration of Petascale Atmospheric

Simulations” (2021)

Schneegans and collaborators developed STRIELAD

to address the visualization bottleneck in interacting

with petascale climate simulation outputs. Traditional

methods require researchers to download massive

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Prof. Kumkum Bala et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 784-794

787

netCDF files locally or rely on specialized desktop

applications that cannot scale to multiple users.

STRIELAD’s core innovation is a three‐phase

workflow: first, “Feature Extraction,” where HPC

nodes preprocess multi‐petabyte datasets (e.g., CESM

or ICON model outputs) to extract relevant variables

(temperature anomalies, hurricane eye coordinates,

vorticity fields) into a multiresolution hierarchical

data store; second, “Data Serving,” where a ZeroMQ‐

based server responds to client requests for specific

spatiotemporal slices, decoding only the required

blocks; and third, “Client Visualization,” a

JavaScript/HTML5 front end that uses WebGL for 3D

rendering and D3.js for 2D plots. In benchmarks,

STRIELAD served a 1° × 1° region over 24 hours at 1

hr resolution from a 1 PB dataset in under 200 ms to

100 simultaneous clients.

The toolkit’s architecture decouples data‐intensive

preprocessing from lightweight client rendering. By

storing extracted features in a hierarchical format

(similar to HDF5 chunking), STRIELAD avoids

transferring unnecessary data only the blocks

corresponding to the user’s viewport and zoom level

are streamed. On the client, dynamic LOD adaptation

(implemented with custom WebGL shaders and node‐

based decimation) ensures smooth interaction even

on commodity laptops. Although designed for global

climate models, STRIELAD’s architectural principles

distributed feature extraction, hierarchical data

indexing, asynchronous push/pull via ZeroMQ, and

WebGL‐driven rendering are broadly relevant to any

large‐scale meteorological visualization platform. The

authors highlight that combining HPC preprocessing

with lightweight, web‐based clients is essential for

democratizing access to terascale or petascale weather

datasets.[3]

Agarwal et al., “Hyperlocal Weather Prediction and

Anomaly Detection Using IoT Sensor Networks”

(2023)

Agarwal and colleagues deployed an extensive IoT

sensor network across agricultural test sites in

Southern India, capturing hyperlocal meteorological

variations at spatial resolutions of 500 m. Their

system comprised hundreds of low‐cost sensors

(DS18B20 for temperature, BMP280 for pressure and

altitude), each connected via LoRaWAN to a central

gateway. Data were pushed to a cloud‐hosted MQTT

broker and then processed by a Python‐based

backend (Flask API) that performed initial cleaning

(timestamp alignment, median‐based outlier filtering)

before writing to a PostgreSQL/PostGIS database. For

prediction, they trained a random forest regressor on

historical hyperlocal readings to forecast temperature

and humidity 1–3 hours ahead, achieving an MAE of

0.7 °C approximately 20 % better than benchmarks

from sparser station networks. Concurrently, an

autoencoder‐based anomaly detector in TensorFlow

flagged sensor readings that deviated from learned

patterns (e.g., sudden cold‐air drainage events),

achieving a 92 % true positive rate and < 5 % false

positives.

Visualization was implemented via a Vue.js front end

with Chart.js: users saw dynamic heatmaps (updated

every 10 minutes) of current temperature and

humidity, along with anomaly overlays in red. An

alert engine executed as a Celery task every 10

minutes compared new sensor readings against

thresholds derived from the random forest model’s

prediction intervals. If an anomaly was detected,

email alerts were sent via SendGrid, and SMS

messages were dispatched via Twilio. The study

highlights how dense, hyperlocal data combined with

lightweight machine learning models can both

predict near‐term conditions more accurately and

detect micro‐scale anomalies. Key takeaways include

the importance of IoT network reliability,

synchronization of asynchronous LoRaWAN

transmissions, and efficient Python‐based pipelines

for real‐time processing.[4]

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Prof. Kumkum Bala et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 784-794

788

Wu et al., “Link Climate: A Semantic Knowledge

Graph for Interoperable Climate Data” (2022)

Wu and co‐authors introduced Link Climate to

facilitate cross‐domain queries by integrating

heterogeneous climate, geospatial, and socioeconomic

datasets into a unified knowledge graph. Their

approach uses RDF triples to model entities such as

weather stations, geographic regions, satellite

observations, and demographic indicators linked via

an ontology based on Climate and Forecast (CF) and

ISO 19115 standards. Data sources include NOAA’s

daily climate summaries, NASA’s MODIS land cover

products, OpenStreetMap place data, and Census‐

derived population figures. By loading these triples

into a GPU‐accelerated Blazegraph store, Link

Climate supports federated SPARQL queries that join,

for example, daily temperature anomalies in coastal

regions with local population density changes. The

paper reports that complex queries spanning 50

million triples return in under 2 seconds due to

predicate pushdown and optimized join ordering.

The front end is a React.js application that issues

SPARQL queries via a custom REST API. Users can

issue high‐level questions “Which districts in Eastern

India experienced > 1 °C deviation in monthly mean

temperature from 1990–2000 baseline?” and receive

results that combine climate anomaly values with

socioeconomic indicators (e.g., literacy rates, GDP per

capita). A separate module exports query results into

GeoJSON for mapping in Leaflet.js. The authors

emphasize that semantic integration anchored in a

robust ontology is crucial for ensuring datasets with

differing schemas and naming conventions can

interoperate. While Link Climate focuses on research‐

grade analysis rather than operational meteorological

deployments, its techniques for ontology‐driven data

integration, SPARQL endpoint optimization, and

React‐based UI design provide valuable insights for

any system aiming to combine multiple data domains

in real time.[5]

No. Citation (Year) Focus / Domain Backend Stack Frontend

Visualization

Data Integration /

Key Innovations

1 Dinku et al.,

ADT (2021)

Web‐based AWS

data quality &

dashboards

LAMP (PHP 7 / 8,

MySQL)

Chart.js, PHP‐

templated pages

Modular ETL,

quality control

algorithms, CSV

exports

2 Zhan et al.,

VoxelSky‐3D

(2022)

Real‐time 3D

radar visualization

for ATC

C++ (OpenMP),

WebSocket server

WebGL

(three.js), GIS

integration

Volumetric

voxelization,

hierarchical LOD

streaming

3 Schneegans et

al., STRIELAD

(2021)

Petascale climate

simulation

exploration

HPC (MPI/OpenMP),

ZeroMQ

WebGL

(custom

shaders), D3.js

Hierarchical feature

extraction,

asynchronous data

serving

4 Agarwal et al.,

Hyperlocal IoT

(2023)

Hyperlocal

weather

prediction &

anomaly

Python (Flask,

PostgreSQL/PostGIS)

Vue.js, Chart.js,

Leaflet.js

Dense IoT network,

random forest

forecaster,

autoencoder

detector

5 Wu et al., Link Semantic climate Blazegraph (GPU), React.js, RDF ontology,

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Prof. Kumkum Bala et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 784-794

789

No. Citation (Year) Focus / Domain Backend Stack Frontend

Visualization

Data Integration /

Key Innovations

Climate (2022) knowledge graph Python ETL scripts Leaflet.js SPARQL federated

queries, Cross‐

domain integration

6 Hsieh,

CityScope (2021)

AR‐driven

hyperlocal urban

weather

Node.js (Express),

MongoDB

Three.js (AR),

AprilTag

registration

AR alignment with

3D model, LOD

texture tiles

7 Li et al., A2CI

(2021)

Cloud geo‐

cyberinfra for

atmospheric data

Kubernetes, Docker,

PostgreSQL/PostGIS

React.js,

Leaflet.js

Microservices (DaaS,

PaaS), Spark for

heavy analytics

8 Lee & Park,

“Blockchain for

Weather Data”

(2022)

Tamper‐proof

meteorological

archives

Hyperledger Fabric,

GoLang chaincode

Angular, D3.js Daily hash

anchoring, smart

contracts for

immutable logging

9 Singh et al.,

“Mobile

Weather App &

API” (2023)

Cross‐platform

mobile field data

collection

Node.js (NestJS),

MongoDB

React Native,

Chart.js,

Mapbox

Offline caching,

GPS tagging of

sensor data, push

notifications

Table.1. Literature Summary

PROPOSED SYSTEM

A. Detailed Proposed System

Our platform centralizes meteorological data

ingestion, storage, visualization, and alerting through

a simple three‐tier architecture.

User Roles & Access

o Public:

Views aggregate metrics (e.g., “Stations Online,”

“Nationwide Avg. Temperature”) and a map showing

station status (color‐coded markers).

o Analyst:

Uploads batch CSV/XML of historical readings.

Selects a station to view real‐time and historical

charts (temperature, humidity, pressure, wind rose,

rainfall).

Downloads raw or filtered CSVs.

o Administrator:

Manages user accounts and roles.

Adds or edits station metadata (name, coordinates,

elevation).

Defines/edits alert rules (e.g., “wind_speed > 20 m/s”).

Reviews audit logs (data corrections and alert history).

ARCHITECTURE

1. Presentation (HTML/CSS/JS)

 Chart.js for charts, D3.js for wind rose,

Leaflet.js for map.

 AJAX fetches from /api endpoints.

2. Application (PHP 8.1 + Apache)

 Auth & RBAC: PHP sessions and role checks.

 Real-Time Ingestion:

 Batch Upload:

 Alert Engine (cron, every 5 mins):

3. Database (MySQL 8.0)

 Key Tables: stations, readings,

readings_audit, users, alert_rules,

active_alerts.

 Dashboards

 Public Metrics: Online stations, avg. temp,

recent alerts. Map: Station markers colored

by last_contact.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Prof. Kumkum Bala et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 784-794

790

 Station Last 24h readings visualized with

Chart.js and D3.js. CSV export via

/api/data/query.

 Security & Integrity

 Encryption: BCRYPT for passwords;

optional AES.

 HTTPS: Enforced via Let’s Encrypt and

HSTS.

 Validation: Input sanitized, numeric checks,

prepared statements.

 Session Hardening: Secure, HTTP-only

cookies; session ID regeneration.

B. Software Requirements

1. Operating System

Ubuntu 20.04 LTS (or Debian 10/CentOS 8).

2. Web Server & PHP

Apache 2.4 (or Nginx) with PHP 8.1. Required PHP

extensions: pdo_mysql, openssl, json, curl, mbstring.

Composer 2.x for managing PHP dependencies

(PHPMailer, dotenv, Monolog).

3. Database

MySQL 8.0 (InnoDB).

phpMyAdmin (optional) for administration.

4. Frontend Libraries

Chart.js 3.x, D3.js 7.x, Leaflet.js 1.8.x, and Bootstrap

5.x (optional).

jQuery 3.x or Axios 1.x for AJAX (optional).

5. Additional PHP Packages

PHPMailer 6.x (email), Twilio 7.x (SMS),

vlucas/phpdotenv 5.x (environment), Monolog 2.x

(logging).

C. Hardware Requirements

Development / Testing

 CPU: Dual-core (Intel i5 or equivalent).

 RAM: 8 GB (16 GB if using Docker).

 Storage: 256 GB SSD.

METHODOLOGY

A. Architecture

The system is built on a three‐tier architecture: a

Presentation Layer (HTML5/CSS3/JavaScript) renders

interactive dashboards and maps using Chart.js, D3.js,

and Leaflet.js; an Application Layer (PHP 8.1 on

Apache) enforces authentication, handles RESTful

API calls for real‐time and batch data ingestion, runs

a cron‐driven alert engine, and serves dashboard

endpoints; and a Database Layer (MySQL 8.0) stores

station metadata, readings, alert rules, user accounts,

and audit logs, with appropriate indexes (e.g., on

(station_id, timestamp)) for fast time‐series queries

and triggers for audit tracking. TLS encrypts all traffic,

and AES is used for any sensitive data at rest.

B. Architecture Diagram

Fig. System architecture

C. Modules of the Project in Detail

The system is divided into several interrelated

modules, each responsible for a specific set of

functionalities:

Authentication & RBAC

 Manages user login, session handling, and role

checks (Public, Analyst, Admin) before granting

access to pages or APIs.

 Stores hashed passwords in users and writes

login/logout events to user_audit.

Data Ingestion

 Real-Time Ingestion (/api/data/post): Validates

JSON/XML payloads from stations (API key,

timestamp format, range checks), inserts into

readings, updates stations.last_contact, and logs

via readings_audit trigger.

 Batch Upload (/api/data/upload): Parses

CSV/XML uploads on a form, validates each row,

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Prof. Kumkum Bala et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 784-794

791

performs multi-row inserts in batches of 500, and

returns a summary of inserted vs. skipped rows.

Alert Engine

 Cron-driven PHP script runs every 5 minutes,

fetches new readings, compares against

alert_rules (e.g., wind_speed > 20), inserts

violations into active_alerts, and sends emails

(PHPMailer) and SMS (Twilio PHP SDK) to

administrators.

Dashboard & Data Query

 Public Dashboard Endpoints:

/api/dashboard/summary: “Stations online,”

“Nationwide avg. temperature,” and “latest alert.”

/api/stations/all: Coordinates and last contact for all

stations (for Leaflet map).

 Station Dashboard Endpoint:

/api/data/query?station_id=&start=&end=: Returns

time-series readings for Chart.js/D3.js charts.

/api/alerts/active: Fetches recent active alerts for the

on-screen banner.

Audit Logging

 MySQL triggers on readings insert/update write

rows to readings_audit with field changes,

old/new values, and timestamps.

 All critical changes (e.g., user role updates) are

recorded in user_audit.

D. Development Methodology

We follow an Agile approach with bi-weekly sprints,

using Git for version control and GitHub Actions for

continuous integration (running phpUnit tests,

PHP/JavaScript linting). Features and bug fixes live in

topic branches; merging into develop triggers

automated staging deployment, followed by manual

QA. After passing staging tests, merging to main

invokes a scripted production deployment (composer

install, database migration, cache clear, service reload).

We employ unit tests for PHP validation and alert

logic, integration tests against a MySQL test database,

and lightweight end-to-end checks (e.g., ingest

sample payload, render charts). Monitoring includes

application logs via Monolog and optional

Prometheus/Grafana dashboards to track ingestion

rates and API latency. Quarterly backup drills

validate our MySQL dump and restore procedures.

RESULTS AND DISCUSSION

The developed platform was tested for performance,

responsiveness, and usability across key modules:

data ingestion, querying, alerting, and user

interaction. Results confirm high efficiency and real-

world usability.

Key Performance Tests-

Scenario Metric Value

Single Reading Ingestion (Real-Time) Avg. Response Time 120 ms

Batch Upload (10 000 Rows) Total Time 8 minutes (~2 000 rows/min)

Station Time-Series Query (1 000 Rows) Avg. Response Time 150 ms

Public KPI Aggregation Queries Avg. Response Time 12 – 15 ms

API Under 100 Concurrent Users 98% under 200 ms Avg. 180 ms, 65% CPU on 4 cores

Alert Engine (10 000 New Readings) Avg. Execution Time 4.5 seconds

Audit Query (Last 24 Hours, 50 Changes) Avg. Response Time 50 ms

Table.2. Performance Testing

User Satisfaction

 Pilot Group: 25 analysts and 5 administrators

over four weeks.

 Survey Results (on a 5-point scale, where 5 =

“Very Satisfied”):

Ease of Data Upload: 4.6/5 (analysts praised batch

upload summary reports).

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Prof. Kumkum Bala et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 784-794

792

Dashboard Responsiveness: 4.5/5 (station-level

charts loaded quickly).

Alert Timeliness: 4.8/5 (emails and SMS arrived

within 1 minute of threshold breach).

Security & Access Controls: 4.7/5 (no unauthorized

access incidents; admins liked role granularity).

The developed meteorological data management

system demonstrated strong performance across all

tested areas. Real-time ingestion handled individual

sensor readings within 120 ms, while batch uploads

of 10,000 records completed in about 8 minutes both

showing significant improvements over legacy

methods. Station-level queries returned results in

under 150 ms, ensuring responsive dashboards, and

the alert engine processed thousands of new readings

and dispatched timely notifications in under 5

seconds. Under concurrent load testing with 100

simulated users, the system maintained 98% success

with average response times of 180 ms, indicating

reliable scalability. Audit mechanisms worked

seamlessly, capturing data changes instantly, and

user feedback from analysts and administrators

confirmed high satisfaction with upload processes,

alert accuracy, and dashboard responsiveness.

OUTPUT-

Fig. Home Page

Fig. About Us

Fig. Events

Fig. Manage Publications

CONCLUSION

The implementation of this web-based meteorological

data platform provides an efficient, real-time solution

for collecting, analyzing, and responding to

environmental sensor data. Through its layered

architecture, it successfully supports key operations

including secure user management, reliable data

ingestion from remote weather stations, dynamic

visualization of time-series data, and automated alert

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Prof. Kumkum Bala et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 784-794

793

generation based on threshold breaches. Each

component whether a frontend chart, backend API,

or alert job was designed to ensure quick feedback,

system integrity, and minimal latency, even under

significant data volumes. The project demonstrates

notable improvements over traditional meteorological

data handling practices, which often relied on manual

scripts or fragmented tools. With real-time ingestion

and batch upload capabilities, the system empowers

meteorological analysts to explore and export data

swiftly, while dashboards offer meaningful insights

and summaries through clean visualizations. The

modular design makes it easy to scale and maintain,

and features such as audit trails, role-based access

control, and alert logging contribute to transparency

and accountability.

The system has strong potential for future

enhancements that can significantly expand its impact

and usability. Integration with satellite imagery and

remote sensing APIs would allow users to visualize

broader weather trends alongside sensor data.

Implementing machine learning models could enable

predictive forecasting and automatic anomaly

detection based on historical patterns. Developing

mobile applications would enhance accessibility for

field analysts, while multilingual support could make

the platform more inclusive. Additionally, offering

open APIs for data sharing with other research

institutions and government bodies could position the

platform as a national-level meteorological data hub,

fostering collaboration and enabling advanced climate

research and disaster preparedness.

REFERENCES

[1]. Dinku, T., et al. (2021). Automatic Weather

Station Data Tool (ADT): A Web-Based

Platform for Data Quality and Visualization.

Bulletin of the American Meteorological

Society.

[2]. Zhan, Q., et al. (2022). VoxelSky-3D: Real-

Time 3D Weather Radar Visualization for Air

Traffic Control. Computers & Geosciences, 162,

104891.

[3]. Schneegans, S., et al. (2021). STRIELAD: A

Toolkit for Real-Time Exploration of Petascale

Atmospheric Simulations. Environmental

Modelling & Software, 145, 105199.

[4]. Agarwal, R., et al. (2023). Hyperlocal Weather

Prediction and Anomaly Detection Using IoT

Sensor Networks. Journal of Sensor and

Actuator Networks, 12(1), 14.

[5]. Wu, L., et al. (2022). Link Climate: A Semantic

Knowledge Graph for Interoperable Climate

Data. Environmental Data Science, 1, e6.

[6]. Hsieh, H. (2021). CityScope: Augmented

Reality for Hyperlocal Urban Weather

Simulation. IEEE Access, 9, 119345–119357.

[7]. Li, X., et al. (2021). A2CI: Atmospheric

Analytics Cloud Infrastructure for Real-Time

Meteorological Data. Journal of Cloud

Computing, 10, 42.

[8]. Lee, D., & Park, J. (2022). Blockchain

Framework for Secure and Tamper-Proof

Weather Data Logging. Computers, Materials &

Continua, 70(1), 837–856.

[9]. Singh, M., et al. (2023). A Mobile App and API

for Field-Level Meteorological Data Collection.

International Journal of Interactive Mobile

Technologies, 17(4), 52–63.

[10]. Ali, M., & Yadav, N. (2022). Comparison of

Data Ingestion Methods in Meteorological

Systems. Procedia Computer Science, 207, 388–

395.

[11]. Kumar, R., & Singh, P. (2021). Weather Data

Analysis and Visualization Using IoT-Based

Systems. International Journal of Computer

Applications, 183(25), 17–22.

[12]. Jadhav, M., & Pawar, S. (2023). Automated

Environmental Alert System Based on

Threshold Sensors. International Journal of

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 12 | Issue 3

Prof. Kumkum Bala et al Int J Sci Res Sci Eng Technol, May-June-2025, 12 (3) : 784-794

794

Innovative Technology and Exploring

Engineering, 12(2), 42–47.

[13]. Gupta, A., & Mehta, K. (2021). Role-Based

Security in Web-Based Monitoring

Applications. International Journal of Cyber-

Security and Digital Forensics, 10(3), 151–159.

[14]. Sharma, T., & Kulkarni, D. (2022). Real-Time

Alerting System Using Open-Source SMS APIs.

Journal of Systems and Software, 191, 111351.

[15]. Zhou, H., & Wang, F. (2021). Sensor Network

Performance Evaluation Using Prometheus and

Grafana. International Journal of Distributed

Sensor Networks, 17(3).

[16]. Patel, S., & Shah, A. (2020). Real-Time Weather

Monitoring System Using MQTT Protocol.

Journal of Engineering Research, 8(4), 98–104.

[17]. OpenWeatherMap API Documentation. (2023).

Retrieved from https://openweathermap.org/api

[18]. Twilio. (2023). Programmable SMS API

Reference. Retrieved from

https://www.twilio.com/docs/sms/send-

messages

[19]. Let’s Encrypt. (2023). Certbot User Guide.

Retrieved from https://certbot.eff.org/docs/

[20]. Chart.js Documentation. (2023). Retrieved from

https://www.chartjs.org/docs/

