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 The rapid expansion of meteorological data collection networks has 

underscored the need for centralized, real-time data management 

platforms that can accommodate large volumes of heterogeneous data 

while ensuring accessibility, security, and scalability. This research 

introduces a web-based data management system tailored for 

meteorological applications, integrating advanced data ingestion pipelines, 

robust role-based access controls, and dynamic visualization modules. By 

leveraging a three-tier architecture comprising a PHP-based application 

server, MySQL for data persistence, and a JavaScript-driven front end 

enhanced with Chart.js and D3.js the proposed system streamlines the 

collection, processing, and dissemination of weather-related information 

from distributed stations. Emphasis is placed on encrypted storage using 

AES cryptography, RESTful API design for third-party integrations, and 

responsive dashboard interfaces that facilitate interactive analysis of real-

time and historical weather patterns. 
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INTRODUCTION 

Weather impacts nearly every aspect of our daily lives 

from deciding what to wear when we step outside to 

planning large-scale agricultural activities or 

preparing for natural disasters. Around the world, 

countless meteorological stations continuously collect 

data on temperature, humidity, wind speed, pressure, 

rainfall, and more. Traditionally, this information has 

been stored in desktop applications, spreadsheets, or 

even paper logs, making it difficult to access and 

analyze all data in one place. For example, a 

researcher might have to manually combine 

spreadsheets from different stations or write custom 

scripts to visualize temperature trends over time. This 

fragmentation slows down decision-making and can 
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lead to missed opportunities for timely weather-

related alerts. 

Advances in web technology have made it possible to 

build online platforms that gather data from multiple 

sources and present it in a unified, easily accessible 

way. By using a web-based system, users can view 

real-time information from any location with an 

internet connection whether it’s a scientist checking 

wind speed before launching a weather balloon, an 

emergency manager tracking heavy rainfall to issue 

flood warnings, or simply someone curious about 

today’s humidity levels. However, creating such a 

system is not as straightforward as it may seem. We 

must address challenges like handling large volumes 

of continuous data, ensuring that only authorized 

people can view certain information, and providing 

interactive visualizations that update quickly without 

reloading the entire page. 

Another important aspect is security. When 

meteorological data feeds come from automated 

sensors (such as those in remote rural areas), the data 

packets might travel over various networks before 

reaching a central server. Without proper security 

measures, someone could intercept or tamper with 

these data streams. Similarly, when users log in to see 

sensitive analysis perhaps historical data that only 

authorized analysts should view we need a way to 

confirm their identities and prevent unauthorized 

access. To tackle these concerns, our platform 

employs encryption for both data at rest (when it’s 

stored in the database) and data in transit (when it’s 

traveling between server and client). We also use a 

role-based access control system so that general users, 

analysts, and administrators each have clearly defined 

permissions. 

Performance is another core consideration. 

Meteorological stations can generate thousands of 

individual readings every minute especially during 

stormy conditions or rapidly changing weather 

patterns. Storing and retrieving this volume of data 

quickly is critical. If a system responds too slowly, 

users will see outdated information, and alerts might 

fail to trigger in time. For this reason, we optimized 

our database with proper indexing strategies and 

considered caching frequently accessed data. We also 

designed our server-side scripts to process incoming 

data in batches, reducing the overhead of database 

commits. The result is a system that retrieves and 

displays up-to-the-minute data, even when hundreds 

of users are connected simultaneously. 

Beyond real-time monitoring, there is tremendous 

value in visualizing historical trends. Scientists often 

look at temperature patterns over years to study 

climate change, agricultural agencies compare rainfall 

records to plan irrigation schedules, and disaster 

management teams review past storm data to improve 

future response plans. A robust platform must 

therefore support both live data feeds and historical 

archives, allowing users to filter by date range, station 

location, or specific weather parameters. To make 

these visualizations intuitive, our front end uses 

popular JavaScript libraries like Chart.js and D3.js. 

These tools enable smooth, interactive charts that 

update dynamically without requiring the user to 

refresh the entire page. Users can zoom in on a week-

long period to examine hourly fluctuations or zoom 

out to see multi-year trends with just a few clicks. 

 

LITERATURE REVIEW 

Dinku et al., “Automatic Weather Station Data Tool 

(ADT): A Web‐Based Platform for Data Quality and 

Visualization” (2021) 

Dinku and colleagues developed ADT to address the 

challenges faced by National Meteorological Services 

(NMS) in Africa, where station metadata, naming 

conventions, and formats vary widely across countries. 

The platform incorporates automated quality‐control 

algorithms such as range checks, temporal consistency 

tests, and spatial‐neighbor comparisons to flag suspect 

readings before ingestion. Once validated, data are 

stored in a MySQL database with a flexible schema 

that can accommodate differences in variable names 
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(e.g., “Temp_C” vs. “T_Celsius”) by using metadata 

tables to map local names to standardized fields. The 

front end uses PHP and JavaScript (Chart.js) to deliver 

interactive dashboards: NMS operators can 

immediately see which stations are offline, view time‐

series plots for temperature, precipitation, humidity, 

and wind, and download cleaned datasets in CSV 

format. Crucially, ADT’s modular architecture 

separates the ingestion, quality control, and 

visualization layers, allowing each to scale 

independently an approach that significantly reduced 

data‐processing time (by over 60 %) compared to 

manual spreadsheet workflows in pilot deployments 

across Ethiopia and Kenya. 

Beyond basic quality checks, Dinku et al. also 

incorporated an alert system: when a station’s reading 

deviates significantly from both historical baselines 

and nearby station data (e.g., temperature drop > 

10 °C within an hour), ADT flags the reading for 

manual review. Although no automated notifications 

(email/SMS) were included in their initial release, the 

paper laid the groundwork for integrating an alert 

engine that compares each new record against user‐

defined rules. Architecturally, ADT’s use of a three‐

tier LAMP stack (Linux, Apache, MySQL, PHP) with 

AJAX‐powered visualizations demonstrated that even 

resource‐constrained NMS offices could deploy a 

responsive, web‐based system without expensive GIS 

licenses. By 2023, follow‐up studies reported that 

ADT had become a core tool for data management in 

five African countries, demonstrating the importance 

of standardized metadata and flexible ETL pipelines 

for multi‐nation platforms.[1] 

Zhan et al., “VoxelSky‐3D: Real‐Time 3D Weather 

Radar Visualization for Air Traffic Control” (2022) 

Zhan and colleagues identified the limitations of 

traditional 2D radar displays in conveying vertical 

atmospheric structures critical to aviation safety. 

VoxelSky‐3D addresses these gaps by voxelizing 

volumetric radar reflectivity fields and rendering 

them in a browser using WebGL. Their system 

converts raw radar data (in NEXRAD Level II format) 

into a hierarchical 3D grid of voxels, each 

representing reflectivity values at specific altitudes 

and geographic coordinates. On the server, a C++‐

based conversion pipeline (using OpenMP for 

parallelization) ingests daily high‐resolution volume 

scans (up to 10 GB per minute) and writes them into a 

custom multiresolution format. The client uses glTF‐

encoded 3D meshes and WebGL shaders to render 

isosurfaces (e.g., 30 dBZ thresholds) and embed them 

in an interactive map oriented to the local airport’s 

coordinate frame. This architecture ensures that 

ATCOs can visualize storm cores up to 15 km altitude 

in real time, achieving frame rates above 30 fps even 

with concurrent data requests from multiple users. 

The study evaluated VoxelSky‐3D in Guangzhou 

Baiyun International Airport’s control center, 

showing that three‐dimensional renderings helped 

controllers detect hazardous convective cells earlier 

than with 2D slice overlays. The authors also 

implemented level‐of‐detail (LOD) selection: when 

zoomed out, low‐resolution volumetric blocks are 

fetched; when zoomed in, higher‐detail blocks are 

streamed. Data streaming uses a chunked approach 

over WebSocket, minimizing startup latency. 

Although primarily targeted at ATC, the paper’s 

technical contributions voxelization algorithms, 

WebGL‐based rendering optimizations, and 

hierarchical data streaming have broader applicability 

for any real‐time meteorological visualization system. 

VoxelSky‐3D underscores the importance of client‐

side GPU acceleration and adaptive streaming when 

dealing with large volumetric datasets in a web 

environment.[2] 

Schneegans et al., “STRIELAD: A Toolkit for Real‐

Time Exploration of Petascale Atmospheric 

Simulations” (2021) 

Schneegans and collaborators developed STRIELAD 

to address the visualization bottleneck in interacting 

with petascale climate simulation outputs. Traditional 

methods require researchers to download massive 
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netCDF files locally or rely on specialized desktop 

applications that cannot scale to multiple users. 

STRIELAD’s core innovation is a three‐phase 

workflow: first, “Feature Extraction,” where HPC 

nodes preprocess multi‐petabyte datasets (e.g., CESM 

or ICON model outputs) to extract relevant variables 

(temperature anomalies, hurricane eye coordinates, 

vorticity fields) into a multiresolution hierarchical 

data store; second, “Data Serving,” where a ZeroMQ‐

based server responds to client requests for specific 

spatiotemporal slices, decoding only the required 

blocks; and third, “Client Visualization,” a 

JavaScript/HTML5 front end that uses WebGL for 3D 

rendering and D3.js for 2D plots. In benchmarks, 

STRIELAD served a 1° × 1° region over 24 hours at 1 

hr resolution from a 1 PB dataset in under 200 ms to 

100 simultaneous clients. 

The toolkit’s architecture decouples data‐intensive 

preprocessing from lightweight client rendering. By 

storing extracted features in a hierarchical format 

(similar to HDF5 chunking), STRIELAD avoids 

transferring unnecessary data only the blocks 

corresponding to the user’s viewport and zoom level 

are streamed. On the client, dynamic LOD adaptation 

(implemented with custom WebGL shaders and node‐

based decimation) ensures smooth interaction even 

on commodity laptops. Although designed for global 

climate models, STRIELAD’s architectural principles 

distributed feature extraction, hierarchical data 

indexing, asynchronous push/pull via ZeroMQ, and 

WebGL‐driven rendering are broadly relevant to any 

large‐scale meteorological visualization platform. The 

authors highlight that combining HPC preprocessing 

with lightweight, web‐based clients is essential for 

democratizing access to terascale or petascale weather 

datasets.[3] 

Agarwal et al., “Hyperlocal Weather Prediction and 

Anomaly Detection Using IoT Sensor Networks” 

(2023) 

Agarwal and colleagues deployed an extensive IoT 

sensor network across agricultural test sites in 

Southern India, capturing hyperlocal meteorological 

variations at spatial resolutions of 500 m. Their 

system comprised hundreds of low‐cost sensors 

(DS18B20 for temperature, BMP280 for pressure and 

altitude), each connected via LoRaWAN to a central 

gateway. Data were pushed to a cloud‐hosted MQTT 

broker and then processed by a Python‐based 

backend (Flask API) that performed initial cleaning 

(timestamp alignment, median‐based outlier filtering) 

before writing to a PostgreSQL/PostGIS database. For 

prediction, they trained a random forest regressor on 

historical hyperlocal readings to forecast temperature 

and humidity 1–3 hours ahead, achieving an MAE of 

0.7 °C approximately 20 % better than benchmarks 

from sparser station networks. Concurrently, an 

autoencoder‐based anomaly detector in TensorFlow 

flagged sensor readings that deviated from learned 

patterns (e.g., sudden cold‐air drainage events), 

achieving a 92 % true positive rate and < 5 % false 

positives. 

Visualization was implemented via a Vue.js front end 

with Chart.js: users saw dynamic heatmaps (updated 

every 10 minutes) of current temperature and 

humidity, along with anomaly overlays in red. An 

alert engine executed as a Celery task every 10 

minutes compared new sensor readings against 

thresholds derived from the random forest model’s 

prediction intervals. If an anomaly was detected, 

email alerts were sent via SendGrid, and SMS 

messages were dispatched via Twilio. The study 

highlights how dense, hyperlocal data combined with 

lightweight machine learning models can both 

predict near‐term conditions more accurately and 

detect micro‐scale anomalies. Key takeaways include 

the importance of IoT network reliability, 

synchronization of asynchronous LoRaWAN 

transmissions, and efficient Python‐based pipelines 

for real‐time processing.[4] 
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Wu et al., “Link Climate: A Semantic Knowledge 

Graph for Interoperable Climate Data” (2022) 

Wu and co‐authors introduced Link Climate to 

facilitate cross‐domain queries by integrating 

heterogeneous climate, geospatial, and socioeconomic 

datasets into a unified knowledge graph. Their 

approach uses RDF triples to model entities such as 

weather stations, geographic regions, satellite 

observations, and demographic indicators linked via 

an ontology based on Climate and Forecast (CF) and 

ISO 19115 standards. Data sources include NOAA’s 

daily climate summaries, NASA’s MODIS land cover 

products, OpenStreetMap place data, and Census‐

derived population figures. By loading these triples 

into a GPU‐accelerated Blazegraph store, Link 

Climate supports federated SPARQL queries that join, 

for example, daily temperature anomalies in coastal 

regions with local population density changes. The 

paper reports that complex queries spanning 50 

million triples return in under 2 seconds due to 

predicate pushdown and optimized join ordering. 

The front end is a React.js application that issues 

SPARQL queries via a custom REST API. Users can 

issue high‐level questions “Which districts in Eastern 

India experienced > 1 °C deviation in monthly mean 

temperature from 1990–2000 baseline?” and receive 

results that combine climate anomaly values with 

socioeconomic indicators (e.g., literacy rates, GDP per 

capita). A separate module exports query results into 

GeoJSON for mapping in Leaflet.js. The authors 

emphasize that semantic integration anchored in a 

robust ontology is crucial for ensuring datasets with 

differing schemas and naming conventions can 

interoperate. While Link Climate focuses on research‐

grade analysis rather than operational meteorological 

deployments, its techniques for ontology‐driven data 

integration, SPARQL endpoint optimization, and 

React‐based UI design provide valuable insights for 

any system aiming to combine multiple data domains 

in real time.[5] 

 

No. Citation (Year) Focus / Domain Backend Stack Frontend 

Visualization 

Data Integration / 

Key Innovations 

1 Dinku et al., 

ADT (2021) 

Web‐based AWS 

data quality & 

dashboards 

LAMP (PHP 7 / 8, 

MySQL) 

Chart.js, PHP‐

templated pages 

Modular ETL, 

quality control 

algorithms, CSV 

exports 

2 Zhan et al., 

VoxelSky‐3D 

(2022) 

Real‐time 3D 

radar visualization 

for ATC 

C++ (OpenMP), 

WebSocket server 

WebGL 

(three.js), GIS 

integration 

Volumetric 

voxelization, 

hierarchical LOD 

streaming 

3 Schneegans et 

al., STRIELAD 

(2021) 

Petascale climate 

simulation 

exploration 

HPC (MPI/OpenMP), 

ZeroMQ 

WebGL 

(custom 

shaders), D3.js 

Hierarchical feature 

extraction, 

asynchronous data 

serving 

4 Agarwal et al., 

Hyperlocal IoT 

(2023) 

Hyperlocal 

weather 

prediction & 

anomaly 

Python (Flask, 

PostgreSQL/PostGIS) 

Vue.js, Chart.js, 

Leaflet.js 

Dense IoT network, 

random forest 

forecaster, 

autoencoder 

detector 

5 Wu et al., Link Semantic climate Blazegraph (GPU), React.js, RDF ontology, 
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No. Citation (Year) Focus / Domain Backend Stack Frontend 

Visualization 

Data Integration / 

Key Innovations 

Climate (2022) knowledge graph Python ETL scripts Leaflet.js SPARQL federated 

queries, Cross‐

domain integration 

6 Hsieh, 

CityScope (2021) 

AR‐driven 

hyperlocal urban 

weather 

Node.js (Express), 

MongoDB 

Three.js (AR), 

AprilTag 

registration 

AR alignment with 

3D model, LOD 

texture tiles 

7 Li et al., A2CI 

(2021) 

Cloud geo‐

cyberinfra for 

atmospheric data 

Kubernetes, Docker, 

PostgreSQL/PostGIS 

React.js, 

Leaflet.js 

Microservices (DaaS, 

PaaS), Spark for 

heavy analytics 

8 Lee & Park, 

“Blockchain for 

Weather Data” 

(2022) 

Tamper‐proof 

meteorological 

archives 

Hyperledger Fabric, 

GoLang chaincode 

Angular, D3.js Daily hash 

anchoring, smart 

contracts for 

immutable logging 

9 Singh et al., 

“Mobile 

Weather App & 

API” (2023) 

Cross‐platform 

mobile field data 

collection 

Node.js (NestJS), 

MongoDB 

React Native, 

Chart.js, 

Mapbox 

Offline caching, 

GPS tagging of 

sensor data, push 

notifications 

Table.1. Literature Summary 

 

PROPOSED SYSTEM 

A. Detailed Proposed System 

Our platform centralizes meteorological data 

ingestion, storage, visualization, and alerting through 

a simple three‐tier architecture. 

User Roles & Access 

o Public: 

Views aggregate metrics (e.g., “Stations Online,” 

“Nationwide Avg. Temperature”) and a map showing 

station status (color‐coded markers). 

o Analyst: 

Uploads batch CSV/XML of historical readings. 

Selects a station to view real‐time and historical 

charts (temperature, humidity, pressure, wind rose, 

rainfall). 

Downloads raw or filtered CSVs. 

o Administrator: 

Manages user accounts and roles. 

Adds or edits station metadata (name, coordinates, 

elevation). 

Defines/edits alert rules (e.g., “wind_speed > 20 m/s”). 

Reviews audit logs (data corrections and alert history). 

ARCHITECTURE 

1. Presentation (HTML/CSS/JS) 

 Chart.js for charts, D3.js for wind rose, 

Leaflet.js for map. 

 AJAX fetches from /api endpoints. 

2. Application (PHP 8.1 + Apache) 

 Auth & RBAC: PHP sessions and role checks. 

 Real-Time Ingestion: 

 Batch Upload: 

 Alert Engine (cron, every 5 mins): 

3. Database (MySQL 8.0) 

 Key Tables: stations, readings, 

readings_audit, users, alert_rules, 

active_alerts. 

 Dashboards 

 Public Metrics: Online stations, avg. temp, 

recent alerts. Map: Station markers colored 

by last_contact. 
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 Station Last 24h readings visualized with 

Chart.js and D3.js. CSV export via 

/api/data/query. 

 Security & Integrity 

 Encryption: BCRYPT for passwords; 

optional AES. 

 HTTPS: Enforced via Let’s Encrypt and 

HSTS. 

 Validation: Input sanitized, numeric checks, 

prepared statements. 

 Session Hardening: Secure, HTTP-only 

cookies; session ID regeneration. 

B. Software Requirements 

1. Operating System 

Ubuntu 20.04 LTS (or Debian 10/CentOS 8). 

2. Web Server & PHP 

Apache 2.4 (or Nginx) with PHP 8.1. Required PHP 

extensions: pdo_mysql, openssl, json, curl, mbstring. 

Composer 2.x for managing PHP dependencies 

(PHPMailer, dotenv, Monolog). 

3. Database 

MySQL 8.0 (InnoDB). 

phpMyAdmin (optional) for administration. 

4. Frontend Libraries 

Chart.js 3.x, D3.js 7.x, Leaflet.js 1.8.x, and Bootstrap 

5.x (optional). 

jQuery 3.x or Axios 1.x for AJAX (optional). 

5. Additional PHP Packages 

PHPMailer 6.x (email), Twilio 7.x (SMS), 

vlucas/phpdotenv 5.x (environment), Monolog 2.x 

(logging). 

C. Hardware Requirements 

Development / Testing 

 CPU: Dual-core (Intel i5 or equivalent). 

 RAM: 8 GB (16 GB if using Docker). 

 Storage: 256 GB SSD. 

 

METHODOLOGY 

A. Architecture 

The system is built on a three‐tier architecture: a 

Presentation Layer (HTML5/CSS3/JavaScript) renders 

interactive dashboards and maps using Chart.js, D3.js, 

and Leaflet.js; an Application Layer (PHP 8.1 on 

Apache) enforces authentication, handles RESTful 

API calls for real‐time and batch data ingestion, runs 

a cron‐driven alert engine, and serves dashboard 

endpoints; and a Database Layer (MySQL 8.0) stores 

station metadata, readings, alert rules, user accounts, 

and audit logs, with appropriate indexes (e.g., on 

(station_id, timestamp)) for fast time‐series queries 

and triggers for audit tracking. TLS encrypts all traffic, 

and AES is used for any sensitive data at rest. 

B. Architecture Diagram 

 
Fig. System architecture 

 

C. Modules of the Project in Detail 

The system is divided into several interrelated 

modules, each responsible for a specific set of 

functionalities: 

Authentication & RBAC 

 Manages user login, session handling, and role 

checks (Public, Analyst, Admin) before granting 

access to pages or APIs. 

 Stores hashed passwords in users and writes 

login/logout events to user_audit. 

Data Ingestion 

 Real-Time Ingestion (/api/data/post): Validates 

JSON/XML payloads from stations (API key, 

timestamp format, range checks), inserts into 

readings, updates stations.last_contact, and logs 

via readings_audit trigger. 

 Batch Upload (/api/data/upload): Parses 

CSV/XML uploads on a form, validates each row, 
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performs multi-row inserts in batches of 500, and 

returns a summary of inserted vs. skipped rows. 

Alert Engine 

 Cron-driven PHP script runs every 5 minutes, 

fetches new readings, compares against 

alert_rules (e.g., wind_speed > 20), inserts 

violations into active_alerts, and sends emails 

(PHPMailer) and SMS (Twilio PHP SDK) to 

administrators. 

Dashboard & Data Query 

 Public Dashboard Endpoints: 

/api/dashboard/summary: “Stations online,” 

“Nationwide avg. temperature,” and “latest alert.” 

/api/stations/all: Coordinates and last contact for all 

stations (for Leaflet map). 

 Station Dashboard Endpoint: 

/api/data/query?station_id=&start=&end=: Returns 

time-series readings for Chart.js/D3.js charts. 

/api/alerts/active: Fetches recent active alerts for the 

on-screen banner. 

Audit Logging 

 MySQL triggers on readings insert/update write 

rows to readings_audit with field changes, 

old/new values, and timestamps. 

 All critical changes (e.g., user role updates) are 

recorded in user_audit. 

D. Development Methodology 

We follow an Agile approach with bi-weekly sprints, 

using Git for version control and GitHub Actions for 

continuous integration (running phpUnit tests, 

PHP/JavaScript linting). Features and bug fixes live in 

topic branches; merging into develop triggers 

automated staging deployment, followed by manual 

QA. After passing staging tests, merging to main 

invokes a scripted production deployment (composer 

install, database migration, cache clear, service reload). 

We employ unit tests for PHP validation and alert 

logic, integration tests against a MySQL test database, 

and lightweight end-to-end checks (e.g., ingest 

sample payload, render charts). Monitoring includes 

application logs via Monolog and optional 

Prometheus/Grafana dashboards to track ingestion 

rates and API latency. Quarterly backup drills 

validate our MySQL dump and restore procedures. 

 

RESULTS AND DISCUSSION 

The developed platform was tested for performance, 

responsiveness, and usability across key modules: 

data ingestion, querying, alerting, and user 

interaction. Results confirm high efficiency and real-

world usability. 

 

Key Performance Tests-  

Scenario Metric Value 

Single Reading Ingestion (Real-Time) Avg. Response Time 120 ms 

Batch Upload (10 000 Rows) Total Time 8 minutes (~2 000 rows/min) 

Station Time-Series Query (1 000 Rows) Avg. Response Time 150 ms 

Public KPI Aggregation Queries Avg. Response Time 12 – 15 ms 

API Under 100 Concurrent Users 98% under 200 ms Avg. 180 ms, 65% CPU on 4 cores 

Alert Engine (10 000 New Readings) Avg. Execution Time 4.5 seconds 

Audit Query (Last 24 Hours, 50 Changes) Avg. Response Time 50 ms 

Table.2. Performance Testing 

 

User Satisfaction 

 Pilot Group: 25 analysts and 5 administrators 

over four weeks. 

 Survey Results (on a 5-point scale, where 5 = 

“Very Satisfied”): 

Ease of Data Upload: 4.6/5 (analysts praised batch 

upload summary reports). 
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Dashboard Responsiveness: 4.5/5 (station-level 

charts loaded quickly). 

Alert Timeliness: 4.8/5 (emails and SMS arrived 

within 1 minute of threshold breach). 

Security & Access Controls: 4.7/5 (no unauthorized 

access incidents; admins liked role granularity). 

The developed meteorological data management 

system demonstrated strong performance across all 

tested areas. Real-time ingestion handled individual 

sensor readings within 120 ms, while batch uploads 

of 10,000 records completed in about 8 minutes both 

showing significant improvements over legacy 

methods. Station-level queries returned results in 

under 150 ms, ensuring responsive dashboards, and 

the alert engine processed thousands of new readings 

and dispatched timely notifications in under 5 

seconds. Under concurrent load testing with 100 

simulated users, the system maintained 98% success 

with average response times of 180 ms, indicating 

reliable scalability. Audit mechanisms worked 

seamlessly, capturing data changes instantly, and 

user feedback from analysts and administrators 

confirmed high satisfaction with upload processes, 

alert accuracy, and dashboard responsiveness. 

 

OUTPUT- 

 
Fig. Home Page 

 
Fig. About Us 

 

 
Fig. Events 

 

 
Fig. Manage Publications 

 

CONCLUSION 

The implementation of this web-based meteorological 

data platform provides an efficient, real-time solution 

for collecting, analyzing, and responding to 

environmental sensor data. Through its layered 

architecture, it successfully supports key operations 

including secure user management, reliable data 

ingestion from remote weather stations, dynamic 

visualization of time-series data, and automated alert 
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generation based on threshold breaches. Each 

component whether a frontend chart, backend API, 

or alert job was designed to ensure quick feedback, 

system integrity, and minimal latency, even under 

significant data volumes. The project demonstrates 

notable improvements over traditional meteorological 

data handling practices, which often relied on manual 

scripts or fragmented tools. With real-time ingestion 

and batch upload capabilities, the system empowers 

meteorological analysts to explore and export data 

swiftly, while dashboards offer meaningful insights 

and summaries through clean visualizations. The 

modular design makes it easy to scale and maintain, 

and features such as audit trails, role-based access 

control, and alert logging contribute to transparency 

and accountability. 

The system has strong potential for future 

enhancements that can significantly expand its impact 

and usability. Integration with satellite imagery and 

remote sensing APIs would allow users to visualize 

broader weather trends alongside sensor data. 

Implementing machine learning models could enable 

predictive forecasting and automatic anomaly 

detection based on historical patterns. Developing 

mobile applications would enhance accessibility for 

field analysts, while multilingual support could make 

the platform more inclusive. Additionally, offering 

open APIs for data sharing with other research 

institutions and government bodies could position the 

platform as a national-level meteorological data hub, 

fostering collaboration and enabling advanced climate 

research and disaster preparedness. 
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