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 Due to rapid technological growth in transportation, self-driving cars 

became the topic of concern. The main purpose of this project is to use the 

CNN and train the neural network in order to drive the car in autonomous 

mode in a simulator environment. Front camera of a car captures the 

images and we use those captured images in order to train the model, in 

short we can say we have used the concept of behavioural cloning. In 

behavioural cloning, the system tries to mimic the human driving 

behaviour by tracking the steering angle. That means a dataset is generated 

in the simulator by a user driven car in training mode, and the deep neural 

network model then drives the car in autonomous mode. 

In one track a car is trained and in other tracks the car drives in 

autonomous mode. The dataset for Track 1, which was straightforward to 

drive and had good road conditions, was utilized as the training set for the 

automobile to drive itself on Track 2, which has abrupt curves, barriers, 

heights, and shadows are all things to consider. Image processing and other 

augmentation techniques were utilized to solve this difficulty, allowing for 

the extraction of as many data and features as feasible. In the end, the 

vehicle performed admirably on Track 2. In the future, the team hopes to 

achieve the same level of accuracy using real-time data. 
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I. INTRODUCTION 

 

The purpose of this project is to build a better 

autonomous driver which is capable of driving itself 

without falling off the track which uses all the 

functionalities of the car provided like brake, 

accelerator etc. 

The main challenge is to mimic the driving behavior 

of the human driver on the simulator provided by 

Udacity. Here we train the neural networks so that we 

can mimic the behavior which is called behavior 

cloning technique. 

There are two tracks and two modes in the simulator: 

training mode and autonomous mode. The dataset is 
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created by the user when driving the automobile in 

training mode in the simulator. The "excellent" 

driving data is another name for this dataset. The deep 

learning model is then tested on the track to see how 

it performs after being trained with the user data. 

Another difficulty is transferring the results to various 

tracks. 

That is, the model is trained using the dataset 

produced on one of the simulator's tracks, and it is 

then tested on the other track. 

 

II. METHODOLOGY 

 

2.1 Data Collection 

The data collection process involved utilizing a 

simulator environment to capture images from the 

front camera of a car. The simulator provided a 

realistic virtual driving experience, allowing for the 

generation of a diverse dataset representative of 

various driving scenarios. The car's front camera 

recorded images as the vehicle traversed through 

different tracks with varying road conditions, 

including straight stretches, curves, barriers, heights, 

and shadows. 

 
Fig - 1 

 

2.2 Preprocessing 

Prior to training the neural network model, the 

collected images underwent preprocessing steps to 

enhance their suitability for training. This 

preprocessing included normalization to standardize 

pixel values, resizing to ensure uniform image 

dimensions, and data augmentation techniques to 

increase the diversity of the dataset. Augmentation 

techniques such as random rotation, flipping, and 

brightness adjustment were employed to simulate 

real-world variations in lighting and perspective. 

 

2.3 Model Architecture 

The architecture of the convolutional neural network 

(CNN) used in this research consisted of multiple 

layers designed to extract relevant features from the 

input images and make predictions regarding steering 

angles. The CNN architecture comprised 

convolutional layers for feature extraction, followed 

by pooling layers for dimensionality reduction, and 

fully connected layers for steering angle prediction. 

Specific configurations, including the number of layers 

and filter sizes, were determined through 

experimentation to optimize model performance. 

 

2.4 Training Procedure 

The training procedure involved feeding the 

preprocessed images into the CNN model to learn the 

mapping between input images and corresponding 

steering angles. The Adam optimization algorithm was 

employed to minimize the mean squared error loss 

function, which quantified the disparity between 

predicted and actual steering angles. A batch size of 

[specify batch size] and a predefined number of epochs 

[specify number of epochs] were used during training 

to iteratively update the model parameters and 

improve performance. 
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Fig – 2 

 

2.5 Validation and Testing 

To comprehensively evaluate the effectiveness of the 

trained model, a systematic approach was adopted, 

involving the segregation of the dataset into distinct 

subsets for validation and testing purposes. This 

division facilitated rigorous scrutiny of the model's 

performance under various conditions. 

The validation dataset played a crucial role in the 

iterative training process by serving as a means to 

monitor the model's performance and prevent 

overfitting. By periodically assessing the model's 

performance on this subset during training, 

adjustments could be made to optimize its learning 

dynamics and prevent it from memorizing noise in the 

training data. This iterative refinement process 

ensured that the model's predictive capabilities were 

honed to generalize well to unseen data. 

Subsequently, the testing dataset served as the 

ultimate litmus test for the model's generalization 

ability. By evaluating the model on previously unseen 

data, its capacity to make accurate predictions in real-

world scenarios was rigorously assessed. Performance 

metrics such as accuracy, mean squared error, and root 

mean squared error were meticulously computed to 

quantitatively gauge the model's predictive prowess 

across various evaluation criteria. 

This comprehensive evaluation framework provided 

valuable insights into the model's strengths and 

limitations, enabling informed decisions regarding its 

suitability for real-world deployment. Additionally, it 

facilitated the identification of areas for further 

improvement, guiding future research efforts aimed at 

enhancing the robustness and efficacy of autonomous 

driving systems. 

 
Fig - 3 

 

III. BACKGROUND 

 

CNN is a type of feed-forward neural network 

computing system that can be used to learn from input 

data. Learning is accomplished by determining a set of 

weights or filter values that allow the network to 

model the behavior according to the training data. The 

desired output and the output generated by CNN 

initialized with random weights will be different. This 

difference (generated error) is back propagated 

through the layers of CNN to adjust the weights of the 

neurons, which in turn reduces the error and allows 

us to produce output closer to the desired one . 

 
Fig – 4 

CNN is good at capturing hierarchical and spatial data 

from images. It utilizes filters that look at regions of an 
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input image with a defined window size and map it to 

some output. It then slides the window by some 

defined stride to other regions, covering the whole 

image. Each convolution filter layer thus captures the 

properties of this input image hierarchically in a series 

of subsequent layers, capturing the details like lines in 

image, then shapes, then whole objects in later layers. 

CNN can be a good fit to feed the images of a dataset 

and classify them into their respective classes. 

 

IV. SIMULATOR AND DATASET 

 

Udacity Simulator 

Udacity has provided the simulator for training the car 

in the specific path and the platform to run the car 

through our prepared model of autonomous driving . 

It is an open source for the software enthusiasts to 

work in this field so that it could be applied in a real-

time environment. Unity, a video game creation 

platform, is used to create it. The simulator is highly 

user friendly and has a changeable resolution and 

controls configuration. 

 
Fig –5 

 

V. NETWORK ARCHITECTURE 

 

Various Network architectures are used to determine 

the steering angle so that the car can be driven in the 

autonomous mode smoothly. In architectures, Time-

Distributed Convolution layers, MaxPooling, Flatten, 

Dropout, Dense, and other layers were ordered in 

series, and various combinations of Time-Distributed 

Convolution layers, MaxPooling, Flatten, Dropout, 

Dense, and other layers were utilized. The best-

performing ones are highlighted in further detail. The 

parameters required to create them may be found in 

the model listings. The architectural figures present a 

high-level view of the layers utilized to construct the 

models. 

Model 1: 

 
Fig –6 

Network architecture containing various layer is 

shown below: 

 
Fig - 7 
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VI. AUGMENTATION AND IMAGE PRE-

PROCESSING 

 

Image Preprocessing 

In our preprocessing phase, we focused on enhancing 

the quality of captured images and extracting relevant 

features for lane detection. While these enhancements 

may not directly contribute to the training output, 

they play a crucial role in improving the robustness of 

our model. Here's an overview of the preprocessing 

steps: 

 

1. Gray Conversion (COLOR_RGB2GRAY): 

• Convert color images to grayscale to simplify 

processing and reduce computational 

complexity. 

2. Blur Images (GaussianBlur): 

• Apply Gaussian blur to smooth the images and 

reduce noise, resulting in a more uniform 

gradient and fewer abrupt changes. 

3. Canny Edge Detection: 

• Utilize the Canny edge detection algorithm to 

highlight changes in gradient pixels, providing a 

clear delineation of edges in the image. 

 

Augmentation 

The challenge of generalizing the car's behavior across 

diverse tracks necessitated the use of augmentation 

techniques during training. These techniques simulate 

various real-world conditions and enhance the 

model's adaptability. Here are the augmentation 

approaches employed: 

 

1. Zoom: 

• Adjust the image zoom level to simulate 

different perspectives and increase the model's 

ability to anticipate upcoming road conditions. 

2. Panning: 

• Crop a portion of the image containing relevant 

road features, ignoring extraneous information 

from the surrounding environment. 

Approximately 30% of the top section of the 

image is cropped during training. 

3. Brightness Adjustment: 

• Mimic varying lighting conditions by adjusting 

the brightness of images, allowing the model to 

learn to navigate through different weather 

conditions, such as bright sunny days or low-

light environments. 

4. Flipping: 

• Flip images horizontally by 180 degrees to 

augment the dataset with mirrored 

representations of road features. This helps the 

model generalize better to road configurations 

involving left and right turns. 

 

VII. OBSERVATIONS 

 

The result that has been observed during the training 

phase from the architectural model we have used is 

value loss or accuracy. 

 

Accuracy 

After training the model with some of the dataset and 

passing other data for testing we have come up with 

the performance measure which reflects the loss over 

Epoch. 

Epoch: 

Epoch is an arbitrary cutoff used to divide training 

into different phases, which is important for recording 

and periodic assessment. It is commonly described as 

"one run over the complete dataset." When the fit 

technique of Keras models is used with validation data 

or validation split, evaluation is performed at the 

conclusion of each epoch. 

 
Fig – 8 
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Fig – 9 

 
Fig – 10 

 

VIII. CONNECTION 

 

There is Configuration for  the Connection between 

the simulator and the model we have trained earlier. 

The simulator side is called server whereas the user 

made a link with python code said to be client. Socket 

programming is the way where ports listen up and 

exchange the information between the nodes. python-

socketio  is the package that we have used to transport 

the telemetry information back and forth 

 

 
Fig – 11 

 

IX. RECEIVING THE TELEMETRY INFORMATION 

 

The automatic communication mechanisms from 

many data sources are referred to as telemetry. 

Customer experiences are improved through the 

usage of telemetry data, which is used to track 

security, application health, quality, and 

performance.Areas may be regulated and controlled 

remotely via telemetry. Temperature, pressure, 

humidity, movement, and illumination, among other 

sensors, may all be controlled and monitored with it. 

Telemetry allows measurements to be taken without 

having to be present, regardless of mobility. 

 

X. DRIVE PERFORMANCE 

 

We evaluate the performance on the metrics of 

generalization , the working of car in track-2. This 

may be characterized as how effectively the models 

forecast values when driving on a track for which 

they were not trained. The expected steering angle, 

brakes, and throttle are the values here. It's not 

something that can be charted, but it can be measured 

in terms of how far the car can travel on the second 

track without tipping over. The pace, twists, and track 

circumstances such as hills, shadows, and so on can all 

have an impact.The models are only given training on 

Track 1 data because it is easier, but they are validated 

on Track 2. As a result, working with Track 2 was 

quite difficult. During the trial, a few new findings 

were made that support this claim. 
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• Most architectures were unable to take the first 

turn on Track 2 while performing well on 

Track 1 and providing the greatest accuracy 

during training (loss over epochs). 

• Overfitting for the Track 1 dataset might be the 

cause. Overfitting occurs when a software 

attempts to mimic the training data too 

accurately. The model trains for details and 

even noise for the data it has passed through in 

general. This, in turn, has a detrimental 

influence on the capacity to generalize. 

 

XI. CHANGE MADE TO WORK AROUND THE 

PROBLEM 

 

• Gaussian filter and augmentation techniques 

are utilized to do something about this 

challenge. 

 

XII. FUTURE DIRECTIONS 

 

The current research lays a solid foundation for 

advancing autonomous driving technology, yet there 

are several avenues for future exploration and 

improvement. Here, we outline comprehensive 

directions for future research: 

 

1. Real-Time Deployment: 

• Transitioning the developed model from 

simulation to real-world application is 

paramount. Integrating the trained neural 

network into an actual self-driving vehicle and 

evaluating its performance in real-time driving 

scenarios will provide invaluable insights into 

its practical viability and effectiveness. 

 

2. Robustness Enhancement: 

• Enhancing the model's robustness to various 

uncertainties, including adverse weather 

conditions, changing road surfaces, and 

unexpected obstacles, is critical for ensuring 

safe and reliable autonomous driving across 

diverse environments. Investigating robust 

optimization techniques and sensor fusion 

strategies can fortify the model against these 

challenges. 

 

3. Dynamic Environment Adaptation: 

• Developing adaptive algorithms that enable the 

model to dynamically respond to changes in the 

driving environment, such as construction 

zones, temporary road closures, and pedestrian 

crossings, will bolster its versatility and 

responsiveness. This may involve incorporating 

reinforcement learning mechanisms or 

advanced planning algorithms capable of 

handling dynamic scenarios. 

 

4. Multi-Agent Interaction: 

• Exploring methods for enabling autonomous 

vehicles to interact intelligently with other 

agents, including vehicles, pedestrians, and 

cyclists, in shared spaces is essential for 

enhancing safety and efficiency in urban 

driving scenarios. Research in cooperative 

decision-making, negotiation strategies, and 

communication protocols can facilitate 

harmonious interactions among multiple agents 

on the road. 

 

5. Continual Learning Frameworks: 

• Implementing continual learning frameworks 

that enable the model to adapt and improve 

over time through exposure to new data and 

experiences is crucial for ensuring continual 

refinement and optimization of autonomous 

driving capabilities. This involves developing 

algorithms capable of incremental learning, 

knowledge transfer, and adaptation to evolving 

environments. 

 

6. Hardware Optimization: 
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• Optimizing the hardware architecture and 

computational efficiency of onboard systems is 

imperative for meeting the computational 

demands of real-time processing and decision-

making in autonomous vehicles. Research in 

efficient neural network architectures, 

hardware acceleration techniques, and energy-

efficient computing platforms can facilitate 

scalable and cost-effective deployment of 

autonomous driving systems. 

 

7. Ethical and Regulatory Considerations: 

• Addressing ethical and regulatory challenges 

associated with autonomous driving, such as 

liability assignment, privacy protection, and 

safety standards compliance, necessitates 

interdisciplinary collaboration and policy 

development. Research in ethical decision-

making frameworks, transparent accountability 

mechanisms, and regulatory frameworks for 

autonomous vehicles can ensure responsible 

deployment and societal acceptance. 

 

By pursuing research in these comprehensive 

directions, we can continue to advance the field of 

autonomous driving and accelerate the realization of 

safe, efficient, and accessible transportation for all. 

 

XIII. CONCLUSIONS 

 

This study began with the models being trained and 

parameters being tweaked to achieve the greatest 

performance on the tracks, and then attempting to 

generalize that performance across multiple songs. 

Because the models that performed well on one track 

performed badly on Track 2, picture augmentation 

and processing were required to accomplish real-time 

generalization. Substituting recurrent layers for 

pooling layers might reduce the loss of information 

and would be worth exploring in the future projects 

It's fascinating to see how these models are trained 

using a mix of real-world and simulator data. Then I'll 

understand how a model may be taught in a simulator 

and then generalized to the actual world, or vice versa. 

There are several experimental implementations in 

the field of self-driving automobiles, and our project 

contributes to a large portion of them. In a nutshell, 

we became successful in predicting the steering angle 

using CNN. 
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