

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0)

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN - 2395-1990

Online ISSN : 2394-4099
Available Online at :www.ijsrset.com

 doi :https://doi.org/10.32628/IJSRSET2411269

508

Self-Driving Car Using Simulator
Prof. Shamal Patil1, Hrushikesh Bhujbal2, Fatru Shaikh2, Priya Lokhande2, Aashika Jain5

1Professor, 2Student

Department of Artificial Intelligence & Data Science, ZEAL College of Engineering & Research, Pune,

Maharashtra, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 15 April 2024

Published: 28 April 2024

 Due to rapid technological growth in transportation, self-driving cars

became the topic of concern. The main purpose of this project is to use the

CNN and train the neural network in order to drive the car in autonomous

mode in a simulator environment. Front camera of a car captures the

images and we use those captured images in order to train the model, in

short we can say we have used the concept of behavioural cloning. In

behavioural cloning, the system tries to mimic the human driving

behaviour by tracking the steering angle. That means a dataset is generated

in the simulator by a user driven car in training mode, and the deep neural

network model then drives the car in autonomous mode.

In one track a car is trained and in other tracks the car drives in

autonomous mode. The dataset for Track 1, which was straightforward to

drive and had good road conditions, was utilized as the training set for the

automobile to drive itself on Track 2, which has abrupt curves, barriers,

heights, and shadows are all things to consider. Image processing and other

augmentation techniques were utilized to solve this difficulty, allowing for

the extraction of as many data and features as feasible. In the end, the

vehicle performed admirably on Track 2. In the future, the team hopes to

achieve the same level of accuracy using real-time data.

Keywords: Self-driving car, CNN, Image Processing, Dataset Generation,

Real Time Data, Augmentation Techniques

Publication Issue :

Volume 11, Issue 2

March-April-2024

Page Number :

508-516

I. INTRODUCTION

The purpose of this project is to build a better

autonomous driver which is capable of driving itself

without falling off the track which uses all the

functionalities of the car provided like brake,

accelerator etc.

The main challenge is to mimic the driving behavior

of the human driver on the simulator provided by

Udacity. Here we train the neural networks so that we

can mimic the behavior which is called behavior

cloning technique.

There are two tracks and two modes in the simulator:

training mode and autonomous mode. The dataset is

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 11 | Issue 2

Prof. Shamal Patil et al Int J Sci Res Sci Eng Technol, March-April-2024, 11 (2) : 508-516

509

created by the user when driving the automobile in

training mode in the simulator. The "excellent"

driving data is another name for this dataset. The deep

learning model is then tested on the track to see how

it performs after being trained with the user data.

Another difficulty is transferring the results to various

tracks.

That is, the model is trained using the dataset

produced on one of the simulator's tracks, and it is

then tested on the other track.

II. METHODOLOGY

2.1 Data Collection

The data collection process involved utilizing a

simulator environment to capture images from the

front camera of a car. The simulator provided a

realistic virtual driving experience, allowing for the

generation of a diverse dataset representative of

various driving scenarios. The car's front camera

recorded images as the vehicle traversed through

different tracks with varying road conditions,

including straight stretches, curves, barriers, heights,

and shadows.

Fig - 1

2.2 Preprocessing

Prior to training the neural network model, the

collected images underwent preprocessing steps to

enhance their suitability for training. This

preprocessing included normalization to standardize

pixel values, resizing to ensure uniform image

dimensions, and data augmentation techniques to

increase the diversity of the dataset. Augmentation

techniques such as random rotation, flipping, and

brightness adjustment were employed to simulate

real-world variations in lighting and perspective.

2.3 Model Architecture

The architecture of the convolutional neural network

(CNN) used in this research consisted of multiple

layers designed to extract relevant features from the

input images and make predictions regarding steering

angles. The CNN architecture comprised

convolutional layers for feature extraction, followed

by pooling layers for dimensionality reduction, and

fully connected layers for steering angle prediction.

Specific configurations, including the number of layers

and filter sizes, were determined through

experimentation to optimize model performance.

2.4 Training Procedure

The training procedure involved feeding the

preprocessed images into the CNN model to learn the

mapping between input images and corresponding

steering angles. The Adam optimization algorithm was

employed to minimize the mean squared error loss

function, which quantified the disparity between

predicted and actual steering angles. A batch size of

[specify batch size] and a predefined number of epochs

[specify number of epochs] were used during training

to iteratively update the model parameters and

improve performance.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 11 | Issue 2

Prof. Shamal Patil et al Int J Sci Res Sci Eng Technol, March-April-2024, 11 (2) : 508-516

510

Fig – 2

2.5 Validation and Testing

To comprehensively evaluate the effectiveness of the

trained model, a systematic approach was adopted,

involving the segregation of the dataset into distinct

subsets for validation and testing purposes. This

division facilitated rigorous scrutiny of the model's

performance under various conditions.

The validation dataset played a crucial role in the

iterative training process by serving as a means to

monitor the model's performance and prevent

overfitting. By periodically assessing the model's

performance on this subset during training,

adjustments could be made to optimize its learning

dynamics and prevent it from memorizing noise in the

training data. This iterative refinement process

ensured that the model's predictive capabilities were

honed to generalize well to unseen data.

Subsequently, the testing dataset served as the

ultimate litmus test for the model's generalization

ability. By evaluating the model on previously unseen

data, its capacity to make accurate predictions in real-

world scenarios was rigorously assessed. Performance

metrics such as accuracy, mean squared error, and root

mean squared error were meticulously computed to

quantitatively gauge the model's predictive prowess

across various evaluation criteria.

This comprehensive evaluation framework provided

valuable insights into the model's strengths and

limitations, enabling informed decisions regarding its

suitability for real-world deployment. Additionally, it

facilitated the identification of areas for further

improvement, guiding future research efforts aimed at

enhancing the robustness and efficacy of autonomous

driving systems.

Fig - 3

III. BACKGROUND

CNN is a type of feed-forward neural network

computing system that can be used to learn from input

data. Learning is accomplished by determining a set of

weights or filter values that allow the network to

model the behavior according to the training data. The

desired output and the output generated by CNN

initialized with random weights will be different. This

difference (generated error) is back propagated

through the layers of CNN to adjust the weights of the

neurons, which in turn reduces the error and allows

us to produce output closer to the desired one .

Fig – 4

CNN is good at capturing hierarchical and spatial data

from images. It utilizes filters that look at regions of an

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 11 | Issue 2

Prof. Shamal Patil et al Int J Sci Res Sci Eng Technol, March-April-2024, 11 (2) : 508-516

511

input image with a defined window size and map it to

some output. It then slides the window by some

defined stride to other regions, covering the whole

image. Each convolution filter layer thus captures the

properties of this input image hierarchically in a series

of subsequent layers, capturing the details like lines in

image, then shapes, then whole objects in later layers.

CNN can be a good fit to feed the images of a dataset

and classify them into their respective classes.

IV. SIMULATOR AND DATASET

Udacity Simulator

Udacity has provided the simulator for training the car

in the specific path and the platform to run the car

through our prepared model of autonomous driving .

It is an open source for the software enthusiasts to

work in this field so that it could be applied in a real-

time environment. Unity, a video game creation

platform, is used to create it. The simulator is highly

user friendly and has a changeable resolution and

controls configuration.

Fig –5

V. NETWORK ARCHITECTURE

Various Network architectures are used to determine

the steering angle so that the car can be driven in the

autonomous mode smoothly. In architectures, Time-

Distributed Convolution layers, MaxPooling, Flatten,

Dropout, Dense, and other layers were ordered in

series, and various combinations of Time-Distributed

Convolution layers, MaxPooling, Flatten, Dropout,

Dense, and other layers were utilized. The best-

performing ones are highlighted in further detail. The

parameters required to create them may be found in

the model listings. The architectural figures present a

high-level view of the layers utilized to construct the

models.

Model 1:

Fig –6

Network architecture containing various layer is

shown below:

Fig - 7

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 11 | Issue 2

Prof. Shamal Patil et al Int J Sci Res Sci Eng Technol, March-April-2024, 11 (2) : 508-516

512

VI. AUGMENTATION AND IMAGE PRE-

PROCESSING

Image Preprocessing

In our preprocessing phase, we focused on enhancing

the quality of captured images and extracting relevant

features for lane detection. While these enhancements

may not directly contribute to the training output,

they play a crucial role in improving the robustness of

our model. Here's an overview of the preprocessing

steps:

1. Gray Conversion (COLOR_RGB2GRAY):

• Convert color images to grayscale to simplify

processing and reduce computational

complexity.

2. Blur Images (GaussianBlur):

• Apply Gaussian blur to smooth the images and

reduce noise, resulting in a more uniform

gradient and fewer abrupt changes.

3. Canny Edge Detection:

• Utilize the Canny edge detection algorithm to

highlight changes in gradient pixels, providing a

clear delineation of edges in the image.

Augmentation

The challenge of generalizing the car's behavior across

diverse tracks necessitated the use of augmentation

techniques during training. These techniques simulate

various real-world conditions and enhance the

model's adaptability. Here are the augmentation

approaches employed:

1. Zoom:

• Adjust the image zoom level to simulate

different perspectives and increase the model's

ability to anticipate upcoming road conditions.

2. Panning:

• Crop a portion of the image containing relevant

road features, ignoring extraneous information

from the surrounding environment.

Approximately 30% of the top section of the

image is cropped during training.

3. Brightness Adjustment:

• Mimic varying lighting conditions by adjusting

the brightness of images, allowing the model to

learn to navigate through different weather

conditions, such as bright sunny days or low-

light environments.

4. Flipping:

• Flip images horizontally by 180 degrees to

augment the dataset with mirrored

representations of road features. This helps the

model generalize better to road configurations

involving left and right turns.

VII. OBSERVATIONS

The result that has been observed during the training

phase from the architectural model we have used is

value loss or accuracy.

Accuracy

After training the model with some of the dataset and

passing other data for testing we have come up with

the performance measure which reflects the loss over

Epoch.

Epoch:

Epoch is an arbitrary cutoff used to divide training

into different phases, which is important for recording

and periodic assessment. It is commonly described as

"one run over the complete dataset." When the fit

technique of Keras models is used with validation data

or validation split, evaluation is performed at the

conclusion of each epoch.

Fig – 8

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 11 | Issue 2

Prof. Shamal Patil et al Int J Sci Res Sci Eng Technol, March-April-2024, 11 (2) : 508-516

513

Fig – 9

Fig – 10

VIII. CONNECTION

There is Configuration for the Connection between

the simulator and the model we have trained earlier.

The simulator side is called server whereas the user

made a link with python code said to be client. Socket

programming is the way where ports listen up and

exchange the information between the nodes. python-

socketio is the package that we have used to transport

the telemetry information back and forth

Fig – 11

IX. RECEIVING THE TELEMETRY INFORMATION

The automatic communication mechanisms from

many data sources are referred to as telemetry.

Customer experiences are improved through the

usage of telemetry data, which is used to track

security, application health, quality, and

performance.Areas may be regulated and controlled

remotely via telemetry. Temperature, pressure,

humidity, movement, and illumination, among other

sensors, may all be controlled and monitored with it.

Telemetry allows measurements to be taken without

having to be present, regardless of mobility.

X. DRIVE PERFORMANCE

We evaluate the performance on the metrics of

generalization , the working of car in track-2. This

may be characterized as how effectively the models

forecast values when driving on a track for which

they were not trained. The expected steering angle,

brakes, and throttle are the values here. It's not

something that can be charted, but it can be measured

in terms of how far the car can travel on the second

track without tipping over. The pace, twists, and track

circumstances such as hills, shadows, and so on can all

have an impact.The models are only given training on

Track 1 data because it is easier, but they are validated

on Track 2. As a result, working with Track 2 was

quite difficult. During the trial, a few new findings

were made that support this claim.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 11 | Issue 2

Prof. Shamal Patil et al Int J Sci Res Sci Eng Technol, March-April-2024, 11 (2) : 508-516

514

• Most architectures were unable to take the first

turn on Track 2 while performing well on

Track 1 and providing the greatest accuracy

during training (loss over epochs).

• Overfitting for the Track 1 dataset might be the

cause. Overfitting occurs when a software

attempts to mimic the training data too

accurately. The model trains for details and

even noise for the data it has passed through in

general. This, in turn, has a detrimental

influence on the capacity to generalize.

XI. CHANGE MADE TO WORK AROUND THE

PROBLEM

• Gaussian filter and augmentation techniques

are utilized to do something about this

challenge.

XII. FUTURE DIRECTIONS

The current research lays a solid foundation for

advancing autonomous driving technology, yet there

are several avenues for future exploration and

improvement. Here, we outline comprehensive

directions for future research:

1. Real-Time Deployment:

• Transitioning the developed model from

simulation to real-world application is

paramount. Integrating the trained neural

network into an actual self-driving vehicle and

evaluating its performance in real-time driving

scenarios will provide invaluable insights into

its practical viability and effectiveness.

2. Robustness Enhancement:

• Enhancing the model's robustness to various

uncertainties, including adverse weather

conditions, changing road surfaces, and

unexpected obstacles, is critical for ensuring

safe and reliable autonomous driving across

diverse environments. Investigating robust

optimization techniques and sensor fusion

strategies can fortify the model against these

challenges.

3. Dynamic Environment Adaptation:

• Developing adaptive algorithms that enable the

model to dynamically respond to changes in the

driving environment, such as construction

zones, temporary road closures, and pedestrian

crossings, will bolster its versatility and

responsiveness. This may involve incorporating

reinforcement learning mechanisms or

advanced planning algorithms capable of

handling dynamic scenarios.

4. Multi-Agent Interaction:

• Exploring methods for enabling autonomous

vehicles to interact intelligently with other

agents, including vehicles, pedestrians, and

cyclists, in shared spaces is essential for

enhancing safety and efficiency in urban

driving scenarios. Research in cooperative

decision-making, negotiation strategies, and

communication protocols can facilitate

harmonious interactions among multiple agents

on the road.

5. Continual Learning Frameworks:

• Implementing continual learning frameworks

that enable the model to adapt and improve

over time through exposure to new data and

experiences is crucial for ensuring continual

refinement and optimization of autonomous

driving capabilities. This involves developing

algorithms capable of incremental learning,

knowledge transfer, and adaptation to evolving

environments.

6. Hardware Optimization:

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 11 | Issue 2

Prof. Shamal Patil et al Int J Sci Res Sci Eng Technol, March-April-2024, 11 (2) : 508-516

515

• Optimizing the hardware architecture and

computational efficiency of onboard systems is

imperative for meeting the computational

demands of real-time processing and decision-

making in autonomous vehicles. Research in

efficient neural network architectures,

hardware acceleration techniques, and energy-

efficient computing platforms can facilitate

scalable and cost-effective deployment of

autonomous driving systems.

7. Ethical and Regulatory Considerations:

• Addressing ethical and regulatory challenges

associated with autonomous driving, such as

liability assignment, privacy protection, and

safety standards compliance, necessitates

interdisciplinary collaboration and policy

development. Research in ethical decision-

making frameworks, transparent accountability

mechanisms, and regulatory frameworks for

autonomous vehicles can ensure responsible

deployment and societal acceptance.

By pursuing research in these comprehensive

directions, we can continue to advance the field of

autonomous driving and accelerate the realization of

safe, efficient, and accessible transportation for all.

XIII. CONCLUSIONS

This study began with the models being trained and

parameters being tweaked to achieve the greatest

performance on the tracks, and then attempting to

generalize that performance across multiple songs.

Because the models that performed well on one track

performed badly on Track 2, picture augmentation

and processing were required to accomplish real-time

generalization. Substituting recurrent layers for

pooling layers might reduce the loss of information

and would be worth exploring in the future projects

It's fascinating to see how these models are trained

using a mix of real-world and simulator data. Then I'll

understand how a model may be taught in a simulator

and then generalized to the actual world, or vice versa.

There are several experimental implementations in

the field of self-driving automobiles, and our project

contributes to a large portion of them. In a nutshell,

we became successful in predicting the steering angle

using CNN.

XIV. REFERENCES

[1]. SAE International, "SAE J3016C (Taxonomy and

Definitions for Terms Related to Driving

Automation Systems for On-Road Motor

Vehicles)", 2021.

[2]. Lerner, J., &Tirole, J. (2003). Some Simple

Economics of Open Source. The Journal of

Industrial Economics, 50(2), 197-234.

[3]. Lerner, J., &Tirole, J. (2005). The Economics of

Technology Sharing: Open Source and Beyond.

Journal of Economic Perspectives, 19(2), 99-

120.

[4]. von Krogh, G., &Spaeth, S. (2007). The open

source software phenomenon: Characteristics

that promote research. Journal of Strategic

Information Systems, 16, 236-253.

[5]. Apollo. [Online]. Available:

https://apollo.auto/index.html.

[6]. CARLA Simulator. [Online]. Available:

https://carla.org/.

[7]. von Krogh, G., & von Hippel, E. (2006). The

Promise of Research on Open Source Software.

Management Science, 52(7).

[8]. YOLO: Real-Time Object Detection. [Online].

Available: https://pjreddie.com/darknet/yolo/.

[9]. Krizhevsky, A., Sutskever, I., & Hinton, G. E.

(2012). Imagenet classification with deep

convolutional neural networks. In: NIPS.

[10]. LeCun, Y., Bengio, Y., & Hinton, G. E. (2015).

Deep learning. Nature.

[11]. Zablocki, E., Ben-Younes, H., Perez, P., & Cord,

M. (Year). Explainability of vision-based

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 11 | Issue 2

Prof. Shamal Patil et al Int J Sci Res Sci Eng Technol, March-April-2024, 11 (2) : 508-516

516

autonomous driving systems: Review and

challenges.

[12]. Ullman, S. (1980). Against direct perception.

Basic Books.

[13]. Redmon, J., &Farhadi, A. (2017). YOLO9000:

better faster stronger. In: CVPR.

[14]. Redmon, J., Divvala, S. K., Girshick, R. B.,

&Farhadi, A. (2016). You only look once:

Unified real-time object detection. In: CVPR.

